The top 3 reasons why your spreadsheet won’t work for optimizing reorder points on spare parts

We often encounter Excel-based reorder point planning methods.  In this post, we’ve detailed an approach that a customer used prior to proceeding with Smart.  We describe how their spreadsheet worked, the statistical approaches it relied on, the steps planners went through each planning cycle, and their stated motivations for using (and really liking) this internally developed spreadsheet.

Their monthly process consisted of updating a new month of actuals into the “reorder point sheet.”  An embedded formula recomputed the Reorder Point (ROP) and order-up-to (Max) level.  It worked like this:

  • ROP = LT Demand + Safety Stock
  • LT Demand = average daily demand x lead time days (assumed constant to keep things simple)
  • Safety Stock for long lead time parts = Standard deviation x 2.0
  • Safety Stock for short lead time parts = Standard deviation x 1.2
  • Max = ROP + supplier-dictated Minimum Order Quantity

Historical averages and standard deviations used 52-weeks of rolling history (i.e., the newest week replaced the oldest week each period).  The standard deviation of demand was computed using the “stdevp” function in Excel.

Every month, a new ROP was recomputed. Both the average demand and standard deviation were modified by the new week’s demand, which in turn updated the ROP.

The default ROP is always based on the above logic. However, planners would make changes under certain conditions:

1. Planners would increase the Min for inexpensive parts to reduce risk of taking an on-time delivery hit (OTD) on an inexpensive part.

2. The Excel sheet identified any part with a newly calculated ROP that was ± 20% different from the current ROP.

3. Planners reviewed parts that exceed the exception threshold, proposed changes, and got a manager to approve.

4. Planners reviewed items with OTD hits and increased the ROP based on their intuition. Planners continued to monitor those parts for several periods and lowered the ROP when they felt it is safe.

5. Once the ROP and Max quantity were determined, the file of revised results was sent to IT, who uploaded into their ERP.

6. The ERP system then managed daily replenishment and order management.

Objectively, this was perhaps an above-average approach to inventory management. For instance, some companies are unaware of the link between demand variability and safety stock requirements and rely on rule of methods or intuition exclusively.  However,  there are problems with their approach:

1. Manual data updates
The spreadsheets required manual updating. To recompute, multiple steps were required, each with their own dependency. First, a data dump needed to be run from the ERP system.  Second, a planner would need to open the spreadsheet and review it to make sure the data imported properly.  Third, they needed to review output to make sure it calculated as expected.  Fourth, manual steps were required to push the results back to the ERP system.

2. One Size Fits All Safety Stock
Or in this case, “one of two sizes fit all”. The choice of using 2x and 1.2x standard deviation for long and short lead time items respectively equates to service levels of 97.7% and 88.4%.    This is a big problem since it stands to reason that not every part in each group requires the same service level.  Some parts will have higher stock out pain than others and vice versa. Service levels should therefore be specified accordingly and be commensurate with the importance of the item.  We discovered that they were experiencing OTD hits on roughly 20% of their critical spare parts which necessitated manual overrides of the ROP.  The root cause was that on all short lead time items they they were planning for an 88.4% service level target. So, the best they could have gotten was to stock out 12% of the time even if “on plan.”   It would have been better to plan service level targets according to the importance of the part.

3. Safety stock is inaccurate.  The items being planned for this company are spare parts to support diagnostic equipment.  The demand on most of these parts is very intermittent and sporadic.  So, the choice of using an average to compute lead time demand wasn’t unreasonable if you accept the need for ignoring variability in lead times.  However, the reliance on a Normal distribution to determine the safety stock was a big mistake that resulted in inaccurate safety stocks.  The company stated that its service levels for long lead time items ran in the 90% range compared to their target of 97.7%, and that they made up the difference with expedites.  Achieved service levels for shorter lead time items were about 80%, despite being targeted for 88.4%.    They computed safety stock incorrectly because their demand isn’t “bell shaped” yet they picked safety stocks assuming they were.  This simplification results in missing service level targets, forcing the manual review of many items that then need to be manually “monitored for several periods” by a planner.  Wouldn’t it be better to make sure the reorder point met the exact service level you wanted from the start?  This would ensure you hit your service levels while minimizing unneeded manual intervention.

There is a fourth issue that didn’t make the list but is worth mentioning.  The spreadsheet was unable to track trend or seasonal patterns.  Historical averages ignore trend and seasonality, so the cumulative demand over lead time used in the ROP will be substantially less accurate for trending or seasonal parts. The planning team acknowledged this but didn’t feel it was a legitimate issue, reasoning that most of the demand was intermittent and didn’t have seasonality.  It is important for the model to pick up on trend and seasonality on intermittent data if it exists, but we didn’t find their data exhibited these patterns.  So, we agreed that this wasn’t an issue for them.  But as planning tempo increases to the point that demand is bucketed daily, even intermittent demand very often turns out to have day-of-week and sometimes week-of-month seasonality. If you don’t run at a higher frequency now, be aware that you may be forced to do so soon to keep up with more agile competition. At that point, spreadsheet-based processing will just not be able to keep up.

In conclusion, don’t use spreadsheets. They are not conducive to meaningful what-if analyses, they are too labor-intensive, and the underlying logic must be dumbed down to process quickly enough to be useful.  In short, go with purpose-built solutions. And make sure they run in the cloud.

 

Spare Parts Planning Software solutions

Smart IP&O’s service parts forecasting software uses a unique empirical probabilistic forecasting approach that is engineered for intermittent demand. For consumable spare parts, our patented and APICS award winning method rapidly generates tens of thousands of demand scenarios without relying on the assumptions about the nature of demand distributions implicit in traditional forecasting methods. The result is highly accurate estimates of safety stock, reorder points, and service levels, which leads to higher service levels and lower inventory costs. For repairable spare parts, Smart’s Repair and Return Module accurately simulates the processes of part breakdown and repair. It predicts downtime, service levels, and inventory costs associated with the current rotating spare parts pool. Planners will know how many spares to stock to achieve short- and long-term service level requirements and, in operational settings, whether to wait for repairs to be completed and returned to service or to purchase additional service spares from suppliers, avoiding unnecessary buying and equipment downtime.

Contact us to learn more how this functionality has helped our customers in the MRO, Field Service, Utility, Mining, and Public Transportation sectors to optimize their inventory. You can also download the Whitepaper here.

 

 

White Paper: What you Need to know about Forecasting and Planning Service Parts

 

This paper describes Smart Software’s patented methodology for forecasting demand, safety stocks, and reorder points on items such as service parts and components with intermittent demand, and provides several examples of customer success.

 

    Spare Parts Planning Isn’t as Hard as You Think

    When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think.

    This conclusion is informed by hundreds of software implementations we’ve directed over the years. Customers managing spare parts and service parts (the latter for internal consumption/MRO), and to a lesser degree aftermarket parts (for resale to installed bases), have consistently implemented our parts planning software faster than their peers in manufacturing and distribution.

    The primary reason is the role in manufacturing and distribution of business knowledge about what might happen in the future. In a traditional B2B manufacturing and distribution environment, there are customers and sales and marketing teams selling to those customers. There are sales goals, revenue expectations, and budgets. This means there is a lot of business knowledge about what will be purchased, what will be promoted, whose opinions need to be accounted for. A complex planning loop is required. In contrast, when managing spare parts, you have a maintenance team that fixes equipment when it breaks. Though there are often maintenance schedules for guidance, what is needed beyond a standard list of consumable parts is often unknown until a maintenance person is on-site. In other words, there just isn’t the same sort of business knowledge available to parts planners when making stocking decisions.

    Yes, that is a disadvantage, but it also has an upside: there is no need to produce a period-by-period consensus demand forecast with all the work that requires. When planning spare parts, you can usually skip many steps required for a typical manufacturer, distributor, or retailer. These skippable steps include:  

    1. Building forecasts at different levels of the business, such as product family or region.
    2. Sharing the demand forecast with sales, marketing, and customers.
    3. Reviewing forecast overrides from sales, marketing, and customers.
    4. Agreeing on a consensus forecast that combines statistics and business knowledge.
    5. Measuring “forecast value add” to determine if overrides make the forecast more accurate.
    6. Adjusting the demand forecast for known future promotions.
    7. Accounting for cannibalization (i.e., if I sell more of product A, I’ll sell less of product B).

    Freed from a consensus-building process, spare parts planners and inventory managers can rely directly on their software to predict usage and the required stocking policies. If they have access to a field-proven solution that addresses intermittent demand, they can quickly “go live” with more accurate demand forecasts and estimates of reorder points, safety stocks, and order suggestions.  Their attention can be focused on getting accurate usage and supplier lead time data. The “political” part of the job can be limited to obtaining organization consensus on service level targets and inventory budgets.

    Spare Parts Planning Software solutions

    Smart IP&O’s service parts forecasting software uses a unique empirical probabilistic forecasting approach that is engineered for intermittent demand. For consumable spare parts, our patented and APICS award winning method rapidly generates tens of thousands of demand scenarios without relying on the assumptions about the nature of demand distributions implicit in traditional forecasting methods. The result is highly accurate estimates of safety stock, reorder points, and service levels, which leads to higher service levels and lower inventory costs. For repairable spare parts, Smart’s Repair and Return Module accurately simulates the processes of part breakdown and repair. It predicts downtime, service levels, and inventory costs associated with the current rotating spare parts pool. Planners will know how many spares to stock to achieve short- and long-term service level requirements and, in operational settings, whether to wait for repairs to be completed and returned to service or to purchase additional service spares from suppliers, avoiding unnecessary buying and equipment downtime.

    Contact us to learn more how this functionality has helped our customers in the MRO, Field Service, Utility, Mining, and Public Transportation sectors to optimize their inventory. You can also download the Whitepaper here.

     

     

    White Paper: What you Need to know about Forecasting and Planning Service Parts

     

    This paper describes Smart Software’s patented methodology for forecasting demand, safety stocks, and reorder points on items such as service parts and components with intermittent demand, and provides several examples of customer success.

     

      Service-Level-Driven Planning for Service Parts Businesses

      Service-Level-Driven Service Parts Planning is a four-step process that extends beyond simplified forecasting and rule-of-thumb safety stocks. It provides service parts planners with data-driven, risk-adjusted decision support.

      Step 1. Ensure that all stakeholders agree on the metrics that matter. All participants in the service parts inventory planning process must agree on the definitions and what metrics matter most to the organization. Service Levels detail the percentage of time you can completely satisfy required usage without stocking out. Fill Rates detail the percentage of the requested usage that is immediately filled from stock. (To learn more about the differences between service levels and fill rate, watch this 4-minute lesson here.) Availability details the percentage of active spare parts that have an on-hand inventory of at least one unit. Holding costs are the annualized costs of holding stock accounting for obsolescence, taxes, interest, warehousing, and other expenses. Shortage costs are the cost of running out of stock including vehicle/equipment down time, expedites, lost sales, and more. Ordering costs are the costs associated with placing and receiving replenishment orders.

      Step 2. Benchmark historical and predicted current service level performance. All participants in the service parts inventory planning process must hold a common understanding of predicted future service levels, fill rates and costs and their implications for your service parts operations. It is critical to measure both historical Key Performance Indicators (KPIs) and their predictive equivalents, Key Performance Predictions (KPPs). Leveraging modern software, you can benchmark past performance and leverage probabilistic forecasting methods to simulate future performance. By stress testing your current inventory stocking policies against all plausible scenarios of future demand, you will know ahead of time how current and proposed stocking policies are likely to perform.

      Step 3. Agree on targeted service levels for each spare part and take proactive corrective action when targets are predicted to miss. Parts planners, supply chain leadership, and the mechanical/maintenance teams should agree on the desired service level targets with a full understanding of the tradeoffs between stockout risk and inventory cost. By leveraging what-if scenarios in modern parts planning software, it is possible to compare alternative stocking policies and identify those that best meets business objectives. Agree on what degree of stockout risk is acceptable for each part or class of parts. Likewise, determine inventory budgets and other cost constraints. Once these limits are agreed, take immediate action to avoid stockouts and excess inventory before they occur. Use your software to automatically upload modified reorder points, safety stock levels, and/or Min/Max parameters to your Enterprise Resource Planning (ERP) or Enterprise Asset Management (EAM) system to adjust daily parts purchasing.

      Step 4. Make it so and keep it so. Empower the planning team with the knowledge and tools it needs to ensure that you strike agreed-upon balance between service levels and costs by driving your ordering process using optimized inputs (forecasts, reorder points, order quantities, safety stocks). Track your KPI’s and use your software to identify and address exceptions. Don’t let reorder points grow stale and outdated.  Recalibrate the stocking policies each planning cycle (at least once monthly) using up-to-date usage history, supplier lead times, and costs. Remember: Recalibration of your service parts inventory policy is preventive maintenance against both stockouts and excess stock.

      7 Digital Transformations for Utilities that will Boost MRO Performance

      Utilities in the electrical, natural gas, urban water and wastewater, and telecommunications fields are all asset intensive. Generation, production, processing, transmission, and distribution of electricity, natural gas, oil, and water, are all reliant on physical infrastructure that must be properly maintained, updated, and upgraded over time. Maximizing asset uptime and the reliability of physical infrastructure demands effective inventory management, spare parts forecasting, and supplier management.

      A utility that executes these processes effectively will outperform its peers, provide better returns for its investors and higher service levels for its customers, while reducing its environmental impact. Impeding these efforts are out-of-date IT systems, evolving security threats, frequent supply chain disruptions, and extreme demand variability.  However, the convergence of these challenges with mature cloud technology and recent advancements in data analytics, probabilistic forecasting, and technologies for data management, present utilities a generational opportunity to digitally transform their enterprise.

      Here are seven digital transformations that require relatively small upfront investments but will generate seven-figure returns.

      1. Inventory Management is the first step in MRO inventory optimization. It involves analyzing current inventory levels and usage patterns to identify opportunities for improvement. This should include looking for overstocked, understocked, or obsolete items.  New probabilistic forecasting technology will help by simulating future parts usage and predicting how current stocking policies will perform.  Pats planners can use the simulation results to proactively identify where policies should be modified.

      2. Accurate forecasting and demand planning are very important in optimizing MRO service parts inventories. An accurate demand forecast is a critical supply chain driver. By understanding demand patterns that result from capital projects and planned and unplanned maintenance, parts planners can more accurately anticipate future inventory needs, budget properly, and better communicate anticipated demand to suppliers. Parts forecasting software can be used to automatically house an accurate set of historical usage that details planned vs. unplanned parts demand.

      3. Managing suppliers and lead times are important components of MRO inventory optimization. It involves selecting the best vendors for the job, having backup suppliers that can deliver quickly if the preferred supplier fails, and negotiating favorable terms.  Identifying the right lead time to base stocking policies on is another important component. Probabilistic simulations available in parts planning software can be used to forecast the probability for each possible lead time that will be faced. This will result in a more accurate recommendation of what to stock compared to using a supplier quoted or average lead time.

      4. SKU rationalization and master data management removes ineffective or out-of-date SKUs from the product catalog and ERP database. It also identifies different part numbers that have been used for the same SKU. The operating cost and profitability of each product are assessed during this procedure, resulting in a common list of active SKUs.  Master data management software can assess product catalogs and information stored in disparate data bases to identify SKU rationalizations ensuring that inventory policies are based on the common part number.

      5.  Inventory control systems are key to synchronizing inventory optimization.    They provide a cost-efficient way for utilities to track, monitor, and manage their inventory. They helps ensure that the utility has the right supplies and materials when and where needed while minimizing inventory costs.

      6. Continuous improvement is essential for optimizing MRO inventories. It involves regularly monitoring and adjusting inventory levels and stocking policies to ensure the most efficient use of resources. When operating conditions change, the utility must detect the change and adjust its operations accordingly. This means planning cycles must operate at a tempo high enough to stay up with changing conditions. Leveraging probabilistic forecasting to recalibrate service parts stocking policies each planning cycle ensures that stocking policies (such as min/max levels) are always up-to-date and reflect the latest parts usage and supplier lead times.

      7. Planning for intermittent demand with modern Spare Parts Planning Software.  The result is a highly accurate estimate of safety stocks, reorder points, and order quantities, leading to higher service levels and lower inventory costs.   Smart Software’s patented probabilistic spare parts forecasting software simulates the probability for each possible demand, accurately determining how much to stock to achieve a utility’s targeted service levels.  Leveraging software to accurately simulate the inflow and outflow of repairable spare parts will better predict downtime, service levels, and inventory costs associated with any chosen pool size for repairable spares.

       

      Spare Parts Planning Software solutions

      Smart IP&O’s service parts forecasting software uses a unique empirical probabilistic forecasting approach that is engineered for intermittent demand. For consumable spare parts, our patented and APICS award winning method rapidly generates tens of thousands of demand scenarios without relying on the assumptions about the nature of demand distributions implicit in traditional forecasting methods. The result is highly accurate estimates of safety stock, reorder points, and service levels, which leads to higher service levels and lower inventory costs. For repairable spare parts, Smart’s Repair and Return Module accurately simulates the processes of part breakdown and repair. It predicts downtime, service levels, and inventory costs associated with the current rotating spare parts pool. Planners will know how many spares to stock to achieve short- and long-term service level requirements and, in operational settings, whether to wait for repairs to be completed and returned to service or to purchase additional service spares from suppliers, avoiding unnecessary buying and equipment downtime.

      Contact us to learn more how this functionality has helped our customers in the MRO, Field Service, Utility, Mining, and Public Transportation sectors to optimize their inventory. You can also download the Whitepaper here.

       

       

      White Paper: What you Need to know about Forecasting and Planning Service Parts

       

      This paper describes Smart Software’s patented methodology for forecasting demand, safety stocks, and reorder points on items such as service parts and components with intermittent demand, and provides several examples of customer success.

       

        6 Do’s and Don’ts for Spare Parts Planning

        Managing spare parts inventories can feel impossible. You don’t know what will break and when. Feedback from mechanical departments and maintenance teams is often inaccurate. Planned maintenance schedules are often shifted around, making them anything but “planned.”   Usage (i.e., demand) patterns are most often extremely intermittent, i.e., demand jumps randomly between zero and something else, often a surprisingly big number. Intermittency, combined with the lack of significant trend or seasonal patterns, render traditional time-series forecasting methods inaccurate. The large number of part-by-locations combinations makes it impossible to manually create or even review forecasts for individual parts.   Given all these challenges, we thought it would be helpful to outline a number of do’s (and their associated don’ts).

        1. Do use probabilistic methods to compute a reorder points and Min/Max levels
          Basing stocking decisions on average daily usage isn’t the right answer. Nor is reliance on traditional forecasting methods like exponential smoothing models. Neither approach works when demand is intermittent because they don’t take proper account of demand volatility. Probabilistic methods that simulate thousands of possible demand scenarios work best. They provide a realistic estimate of the demand distribution and can handle all the zeros and random non-zeros. This will ensure the inventory level is right-sized to hit whatever service level target you choose.
           
        2. Do use service levels instead of rule-of-thumb methods to determine stocking levels
          Many parts planning organizations rely on multiples of daily demand and other rules of thumb to determine stocking policies. For example, reorder points are often based on doubling average demand over the lead time or applying some other multiple depending on the importance of the item. However, averages don’t account for how volatile (or noisy) a part is and will lead to overstocking less noisy parts and understocking more noisy parts.
           
        3. Do frequently recompute stocking policies
          Just because demand is intermittent doesn’t mean nothing changes over time. Yet after interviewing hundreds of companies managing spare parts inventory, we find that fewer than 10% recompute stocking policies monthly. Many never recompute stocking policies until there is a “problem.” Across thousands of parts, usage is guaranteed to drift up or down on at least some of the parts. Supplier lead times can also change. Using an outdated reorder point will cause orders to trigger too soon or too late, creating lots of problems. Recomputing policies every planning cycle ensures inventory will be right-sized. Don’t be reactive and wait for a problem to occur before considering whether the Min or Max should be modified. By then it’s too late – it’s like waiting for your brakes to fail before making a repair. Don’t worry about the effort of recomputing Min/Max values for large numbers of SKU’s: modern software does it automatically. Remember: Recalibration of your stocking policies is preventive maintenance against stockout!
           
        4. Do get buy-in on targeted service levels
          Inventory is expensive and should be right-sized based on striking a balance between the organization’s willingness to stock out and its willingness to budget for spares. Too often, planners make decisions in isolation based on pain avoidance or maintenance technicians’ requests without consideration of how spending on one part impacts the organization’s ability to spend on another part. Excess inventory on one part hurts service levels on other parts by disproportionally consuming the inventory budget. Make sure that service level goals and associated inventory costs of achieving the service levels are understood and agreed to.
           
        5. Do run a separate planning process for repairable parts
          Some parts are very expensive to replace, so it is preferable to send them to repair facilities or back to the OEM for repair. Accounting for the supply side randomness of when repairable parts will be returned, and knowing whether to wait for a repair or to purchase an additional spare, are critical to ensuring item availability without inventory bloat. This requires specialized reporting and the use of probabilistic models.  Don’t treat repairable parts like consumable parts when planning.
           
        6. Do count what is purchased against the budget – not just what is consumed
          Many organizations will allocate total part purchases to a separate corporate budget and ding the mechanical or maintenance team’s budget for parts that are used. In most MRO organizations, especially in public transit and utilities, the repair teams dictate what is purchased. If what is purchased doesn’t count against their budget, they will over-buy to ensure there is never any chance of stockout. They have literally zero incentive to get it right, so tens of millions in excess inventory will be purchased. If what is purchased is reflected in the budget, far more attention will be paid to purchasing only what is truly needed. Recognizing that excess inventory hurts service by robbing the organization of cash that could otherwise be used on understocked parts is an important step to ensuring responsible inventory purchasing.

        Spare Parts Planning Software solutions

        Smart IP&O’s service parts forecasting software uses a unique empirical probabilistic forecasting approach that is engineered for intermittent demand. For consumable spare parts, our patented and APICS award winning method rapidly generates tens of thousands of demand scenarios without relying on the assumptions about the nature of demand distributions implicit in traditional forecasting methods. The result is highly accurate estimates of safety stock, reorder points, and service levels, which leads to higher service levels and lower inventory costs. For repairable spare parts, Smart’s Repair and Return Module accurately simulates the processes of part breakdown and repair. It predicts downtime, service levels, and inventory costs associated with the current rotating spare parts pool. Planners will know how many spares to stock to achieve short- and long-term service level requirements and, in operational settings, whether to wait for repairs to be completed and returned to service or to purchase additional service spares from suppliers, avoiding unnecessary buying and equipment downtime.

        Contact us to learn more how this functionality has helped our customers in the MRO, Field Service, Utility, Mining, and Public Transportation sectors to optimize their inventory. You can also download the Whitepaper here.

         

         

        White Paper: What you Need to know about Forecasting and Planning Service Parts

         

        This paper describes Smart Software’s patented methodology for forecasting demand, safety stocks, and reorder points on items such as service parts and components with intermittent demand, and provides several examples of customer success.

         

          Probabilistic Forecasting for Intermittent Demand

          The Smart Forecaster

            Pursuing best practices in demand planning,

          forecasting and inventory optimization

          Intermittent, lumpy or uneven demand —particularly for low-demand items like service and spare parts — is especially difficult to predict with any accuracy. Smart Software’s proprietary probabilistic forecasting dramatically improves service level accuracy.  If any of these scenarios apply to your company then probabilistic forecasting will help improve your bottom line.

          • Do you have intermittent or lumpy demand with large, infrequent spikes that are many times the average demand?
          • Is it hard to obtain business information about when demand is likely to spike again?
          • Do you miss out on business opportunities because you can’t accurately forecast demand and estimate inventory requirements for certain unpredictable products?
          • Are you required to hold inventory on many items even if they are infrequently demanded in order to differentiate vs. the competition by providing high service levels?
          • Do you have to make unnecessarily large investments in inventory to cover unexpected orders and materials requirements?
          • Do you have to deliver to customers right away despite long supplier lead times?

          If you’ve answered yes to some or all of the questions above, you aren’t alone. Intermittent demand —also known as irregular, sporadic, lumpy, or slow-moving demand — affects industries of all types and sizes: capital goods and equipment sectors, automotive, aviation, public transit, industrial tools, specialty chemicals, utilities and high tech, to name just a few. And it makes demand forecasting and planning extremely difficult. It can be much more than a headache; it can be a multi-million-dollar problem, especially for MRO businesses and others who manage and distribute spare and service parts.

          Identifying intermittent demand data isn’t hard. It typically contains a large percentage of zero values, with non-zero values mixed in randomly. But few forecasting solutions have yielded satisfactory results even in this era of Big Data Analysis, Predictive Analytics, Machine Learning, and Artificial Intelligence.

           

          DOWNLOAD THE ARTICLE

          Traditional Approaches and their Reliance on an Assumed Demand Distribution

          Traditional statistical forecasting methods, like exponential smoothing and moving averages, work well when product demand data is normal, or smooth, but it doesn’t give accurate results with intermittent data. Many automated forecasting tools fail because they work by identifying patterns in demand history data, such as trend and seasonality. But with intermittent demand data, patterns are especially difficult to recognize. These methods also tend to ignore the special role of zero values in analyzing and forecasting demand.Even so, some conventional statistical forecasting methods can produce credible forecasts of the average demand per period.  However, when demand is intermittent, a forecast of the average demand is not nearly sufficient for inventory planning.  Accurate estimates of the entire distribution (i.e., complete set) of all possible lead-time demand values is needed. Without this, these methods produce misleading inputs to inventory control models — with costly consequences.

          Collague with gears ans statistical forecast modeling

           

          To produce reorder points, order-up-to levels, and safety stocks for inventory planning, many forecasting approaches rely on assumptions about the demand and lead time distribution.  Some assume that the probability distribution of total demand for a particular product item over a lead time (lead-time demand) will resemble a normal, classic bell-shaped curve. Other approaches might rely on a Poisson distribution or some other textbook distribution.  With intermittent demand, a one-sized fits all approach is problematic because the actual distribution will often not match the assumed distribution.  When this occurs, estimates of the buffer stock will be wrong.  This is especially the case when managing spare parts (Table 1).

          For each intermittently demanded item, the importance of having an accurate forecast of the entire distribution of all possible lead time demand values — not just one number representing the average or most likely demand per period — cannot be overstated. These forecasts are key inputs to the inventory control models that recommend correct procedures for the timing and size of replenishment orders (reorder points and order quantities). They are particularly essential in spare parts environments, where they are needed to accurately estimate customer service level inventory requirements (e.g., a 95 or 99 percent likelihood of not stocking out of an item) for satisfying total demand over a lead time.  Inventory planning departments must be confident that when they target a desired service level that they will achieve that target.  If the forecasting model consistently yields a different service level than targeted, inventory will be mismanaged and confidence in the system will erode.

          Faced with this challenge, many organizations rely on applying rule of thumb based approaches to determine stocking levels or will apply judgmental adjustments to their statistical forecasts, which they hope will more accurately predict future activity based on past business experience. But there are several problems with these approaches, as well.

          Rule of thumb approaches ignore variability in demand and lead time. They also do not update for changes in demand patterns and don’t provide critical trade-off information about the relationship between service levels and inventory costs.

          Judgmental forecasting is not feasible when dealing with large numbers (thousands and tens of thousands) of items. Furthermore, most judgmental forecasts provide a single-number estimate instead of a forecast of the full distribution of lead-time demand values. Finally, it is easy to inadvertently but incorrectly predict a downward (or upward) trend in demand, based on expectations, resulting in understocking (or over-stocking) inventory.

           

          How does Probabilistic Demand Forecasting Work in Practice?

          Although the full architecture of this technology includes additional proprietary features, a simple example of the approach demonstrates the usefulness of the technique. See Table 1.

          intermittently demanded product items spreedsheet

          Table 1. Monthly demand values for a service part item.

          The 24 monthly demand values for a service part itemare typical of intermittent demand. Let’s say you need forecasts of total demand for this item over the next three months because your parts supplier needs three months to fill an order to replenish inventory. The probabilistic approach is to sample from the 24 monthly values, with replacement, three times, creating a scenario of total demand over the three-month lead time.

          How does the new method of forecasting intermittent demand work

          Figure 1. The results of 25,000 scenarios.

           

          You might randomly select months 6, 12 and 4, which gives you demand values of 0, 6 and 3, respectively, for a total lead-time demand (in units) of 0 + 6 + 3 = 9. You then repeat this process, perhaps randomly selecting months 19, 8 and 14, which gives a lead-time demand of 0 + 32 + 0 = 32 units. Continuing this process, you can build a statistically rigorous picture of the entire distribution of possible lead-time demand values for this item. Figure 1 shows the results of 25,000 such scenarios, indicating (in this example) that the most likely value for lead-time demand is zero but that lead-time demand could be as great as 70 or more units. It also reflects the real-life possibility that nonzero demand values for the part item occurring in the future could differ from those that have occurred in the past.

          With the high-speed computational resources available in the cloud today, probabilistic forecasting methods can provide fast and realistic forecasts of total lead-time demand for thousands or tens of thousands of intermittently demanded product items. These forecasts can then be entered directly into inventory control models to insure that enough inventory is available to satisfy customer demand. This also ensures that no more inventory than necessary is maintained, minimizing costs.

           

          A Field Proven Method That Works

          Customers that have implemented the technology have found that it increases customer service level accuracy and significantly reduces inventory costs.

          Warehouse or storage getting inventory optimization

          A nationwide hardware retailer’s warehousing operation forecasted inventory requirements for 12,000 intermittently demanded SKUs at 95 and 99 percent service levels. The forecast results were almost 100 percent accurate. At the 95 percent service level, 95.23 percent of the items did not stock out (95 percent would have been perfect). At the 99 percent service level, 98.66 percent of the items did not stock out (99 percent would have been perfect).

          The aircraft maintenance operation of a global company got similar service level forecasting results with 6,000 SKUs. Potential annual savings in inventory carrying costs were estimated at $3 million. The aftermarket business unit of an automotive industry supplier, two-thirds of whose 7,000 SKUs demonstrate highly intermittent demand, also projected $3 million in annual cost savings.

          That the challenge of forecasting intermittent product demand has indeed been met is good news for manufacturers, distributors, and spare parts/MRO businesses.  With cloud computing, Smart Software’s field-proven probabilistic method is now accessible to the non-statistician and can be applied at scale to tens of thousands of parts.  Demand data that was once un-forecastable no longer poses an obstacle to achieving the highest customer service levels with the lowest possible investment in inventory.

           

          Hand placing pieces to build an arrow

          DOWNLOAD THE ARTICLE

          Leave a Comment

          Related Posts

          Leveraging ERP Planning BOMs with Smart IP&O to Forecast the Unforecastable

          Leveraging ERP Planning BOMs with Smart IP&O to Forecast the Unforecastable

          In a highly configurable manufacturing environment, forecasting finished goods can become a complex and daunting task. The number of possible finished products will skyrocket when many components are interchangeable. A traditional MRP would force us to forecast every single finished product which can be unrealistic or even impossible. Several leading ERP solutions introduce the concept of the “Planning BOM”, which allows the use of forecasts at a higher level in the manufacturing process. In this article, we will discuss this functionality in ERP, and how you can take advantage of it with Smart Inventory Planning and Optimization (Smart IP&O) to get ahead of your demand in the face of this complexity.

          Why Inventory Planning Shouldn’t Rely Exclusively on Simple Rules of Thumb

          Why Inventory Planning Shouldn’t Rely Exclusively on Simple Rules of Thumb

          For too many companies, a critical piece of data fact-finding ― the measurement of demand uncertainty ― is handled by simple but inaccurate rules of thumb. For example, demand planners will often compute safety stock by a user-defined multiple of the forecast or historical average. Or they may configure their ERP to order more when on hand inventory gets to 2 x the average demand over the lead time for important items and 1.5 x for less important ones. This is a huge mistake with costly consequences.

          Why MRO Businesses Should Care About Excess Inventory

          Why MRO Businesses Should Care About Excess Inventory

          Do MRO companies genuinely prioritize reducing excess spare parts inventory? From an organizational standpoint, our experience suggests not necessarily. Boardroom discussions typically revolve around expanding fleets, acquiring new customers, meeting service level agreements (SLAs), modernizing infrastructure, and maximizing uptime. In industries where assets supported by spare parts cost hundreds of millions or generate significant revenue (e.g., mining or oil & gas), the value of the inventory just doesn’t raise any eyebrows, and organizations tend to overlook massive amounts of excessive inventory.

          Recent Posts

          • Daily Demand Scenarios Smart 2Daily Demand Scenarios
            In this Videoblog, we will explain how time series forecasting has emerged as a pivotal tool, particularly at the daily level, which Smart Software has been pioneering since its inception over forty years ago. The evolution of business practices from annual to more refined temporal increments like monthly and now daily data analysis illustrates a significant shift in operational strategies. […]
          • The Cost of Doing nothing with your inventory Planning SystemsThe Cost of Spreadsheet Planning
            Companies that depend on spreadsheets for demand planning, forecasting, and inventory management are often constrained by the spreadsheet’s inherent limitations. This post examines the drawbacks of traditional inventory management approaches caused by spreadsheets and their associated costs, contrasting these with the significant benefits gained from embracing state-of-the-art planning technologies. […]
          • Learning from Inventory Models Software AILearning from Inventory Models
            In this video blog, the spotlight is on a critical aspect of inventory management: the analysis and interpretation of inventory data. The focus is specifically on a dataset from a public transit agency detailing spare parts for buses. […]
          • The methods of forecasting SoftwareThe Methods of Forecasting
            Demand planning and statistical forecasting software play a pivotal role in effective business management by incorporating features that significantly enhance forecasting accuracy. One key aspect involves the utilization of smoothing-based or extrapolative models, enabling businesses to quickly make predictions based solely on historical data. This foundation rooted in past performance is crucial for understanding trends and patterns, especially in variables like sales or product demand. Forecasting software goes beyond mere data analysis by allowing the blending of professional judgment with statistical forecasts, recognizing that forecasting is not a one-size-fits-all process. This flexibility enables businesses to incorporate human insights and industry knowledge into the forecasting model, ensuring a more nuanced and accurate prediction. […]
          • Epicor AI Forecasting and Inventory Technology Combined with Planner Knowledge for InsightsSmart Software to Present at Epicor Insights 2024
            Smart Software will present at this year's Epicor Insights event in Nashville. If you plan to attend this year, please join us at booth #13 or #501, and learn more about Epicor Smart Inventory Planning and Optimization. . […]

            Inventory Optimization for Manufacturers, Distributors, and MRO

            • Why MRO Businesses Need Add-on Service Parts Planning & Inventory SoftwareWhy MRO Businesses Need Add-on Service Parts Planning & Inventory Software
              MRO organizations exist in a wide range of industries, including public transit, electrical utilities, wastewater, hydro power, aviation, and mining. To get their work done, MRO professionals use Enterprise Asset Management (EAM) and Enterprise Resource Planning (ERP) systems. These systems are designed to do a lot of jobs. Given their features, cost, and extensive implementation requirements, there is an assumption that EAM and ERP systems can do it all. In this post, we summarize the need for add-on software that addresses specialized analytics for inventory optimization, forecasting, and service parts planning. […]
            • Spare-parts-demand-forecasting-a-different-perspective-for-planning-service-partsThe Forecast Matters, but Maybe Not the Way You Think
              True or false: The forecast doesn't matter to spare parts inventory management. At first glance, this statement seems obviously false. After all, forecasts are crucial for planning stock levels, right? It depends on what you mean by a “forecast”. If you mean an old-school single-number forecast (“demand for item CX218b will be 3 units next week and 6 units the week after”), then no. If you broaden the meaning of forecast to include a probability distribution taking account of uncertainties in both demand and supply, then yes. […]
            • Whyt MRO Businesses Should Care about Excess InventoryWhy MRO Businesses Should Care About Excess Inventory
              Do MRO companies genuinely prioritize reducing excess spare parts inventory? From an organizational standpoint, our experience suggests not necessarily. Boardroom discussions typically revolve around expanding fleets, acquiring new customers, meeting service level agreements (SLAs), modernizing infrastructure, and maximizing uptime. In industries where assets supported by spare parts cost hundreds of millions or generate significant revenue (e.g., mining or oil & gas), the value of the inventory just doesn’t raise any eyebrows, and organizations tend to overlook massive amounts of excessive inventory. […]
            • Top Differences between Inventory Planning for Finished Goods and for MRO and Spare PartsTop Differences Between Inventory Planning for Finished Goods and for MRO and Spare Parts
              In today’s competitive business landscape, companies are constantly seeking ways to improve their operational efficiency and drive increased revenue. Optimizing service parts management is an often-overlooked aspect that can have a significant financial impact. Companies can improve overall efficiency and generate significant financial returns by effectively managing spare parts inventory. This article will explore the economic implications of optimized service parts management and how investing in Inventory Optimization and Demand Planning Software can provide a competitive advantage. […]