The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

Many companies adopt a philosophy of “it’s better to have it and not need it, then to need it and not have it.” Planning initiatives such as implementing inventory optimization software in order to optimize reorder points, safety stocks, and order quantities are often seen as narrowly focused on reducing inventory and not pursued. Stock-out costs may very well be extremely high. However, resources are finite. The opportunity cost of keeping too much of one product means less space, cash, and resources for another product. Overstocking on one item reduces the ability to provide adequate levels of service on other items. Justifying overstocks by stating it is good for the customer is a poor excuse at best that hurts the customer and ignores what inventory optimization is really about – properly reallocating inventory investments.

Diminishing Returns and Inventory

Each additional unit of inventory that you carry buys proportionally less service. Inventory optimization software can help you understand the exact stock out risk given a certain level of stock. For example, say your stock-out risk with 20 units of inventory is 10%. If you add another 10 units and carry 30 units, the stock out risk might get cut in half to 5%. If you then add an additional 10 for a total of 40 units, the stock-out risk may only drop to 4%. At some point, the additional inventory just isn’t worth the extra service it buys. This is especially so if the cash used to buy that extra 10 units to get a small service level bump on one item could have been spent on another equally important item for a larger increase in service.

Carrying more than you need means you aren’t efficiently managing assets, which costs money, which means you can’t offer the best price to your customer, which hurts your ability to beat the competition. It also means there is less money for investment in other items. This results in the common adage “We have too much of the stuff we don’t need and not enough of the stuff we do.”

Inventory Optimization is about reallocation

The example presented in the blog’s main image highlights the benefits of reallocating inventory.  We used probability forecasting to estimate the service levels and inventory costs that would result from the current stocking policy. We then conducted a “what-if” scenario by modifying the policy. In the benchmark shown in the first column, the current stock levels were forecasted to yield a 84.78% service level and required $1.67 Million in inventory. Nearly 12% of the items numbers had reached their point of diminishing return and were forecasted to achieve a 100% service level. By imposing a maximum service level of 99% and a minimum service level of 80%, we reallocated inventory.  As a result, the inventory investment dropped to $1.5 Million and service level increased by 3%!

The exact point of diminishing returns will differ depending on the item, the customers involved, and the company making the stocking decision. It is important to understand the inherent levels of stock-out risk that result from current inventory policies and how changes to current policies will impact risk and costs. This enables the reshaping of inventory so that service can be maximized at the minimum possible cost.

Download Smart Inventory Optimization product sheet here: https://smartcorp.com/inventory-optimization/

Leave a Comment

Related Posts

Goldilocks Inventory Levels

Goldilocks Inventory Levels

You may remember the story of Goldilocks from your long-ago youth. Sometimes the porridge was too hot, sometimes it was too cold, but just once it was just right. Now that we are adults, we can translate that fairy tale into a professional principle for inventory planning: There can be too little or too much inventory, and there is some Goldilocks level that is “just right.” This blog is about finding that sweet spot.

Call an Audible to Proactively Counter Supply Chain Noise

Call an Audible to Proactively Counter Supply Chain Noise

You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

An Example of Simulation-Based Multiechelon Inventory Optimization

An Example of Simulation-Based Multiechelon Inventory Optimization

Managing the inventory across multiple facilities arrayed in multiple echelons can be a huge challenge for any company. The complexity arises from the interactions among the echelons, with demands at the lower levels bubbling up and any shortages at the higher levels cascading down.

Recent Posts

  • Smart Software CEO to present at Epicor Insights 2022Smart Software to Present at Epicor Insights 2022
    Smart Software CEO will present at this year's Epicor Insights event in Nashville. If you plan to attend this year, please join us at booth #9 and #705, and learn more about Epicor Smart Inventory Planning and Optimization. […]
  • Smart Software and Arizona Public Service to Present at WERC 2022
    Smart Software CEO and APS Inventory Manager to present WERC 2022 Studio Session on implementing Smart IP&O in 90 Days and achieve significant savings by optimizing reorder points and order quantities for over 250,000 spare parts. […]