Demand Forecasting in a “Build to Order” Company

The Smart Forecaster

Pursuing best practices in demand planning,

forecasting and inventory optimization

We often come into contact with potential customers who claim that they cannot use a forecasting system since they are a “build-to-order” manufacturing operation. I find this a puzzling perspective, because whatever these organizations build requires lower level raw materials or intermediate goods. If those lower level inputs are not available when an order for the finished good is received, the order cannot be built. Consequently, the order could be canceled and the associated revenue lost.

I agree that in such an environment, forecasting the finished good is not always possible or particularly helpful. Sometimes it’s helpful, but not sufficient. In any case, it is critical to make sure that the underlying raw materials and intermediate goods that go into the finished good are available. Demand for these can certainly be forecasted.

The organization’s goal would be to maintain service level inventories for these intermediate goods that are high but not unaffordable. Planners will need to set optimal stocking levels for these materials, balancing service level requirements against available budget. Since a given intermediate good could serve as an input to more than one finished good, the volatility of the demand for the intermediate good would be less than the volatility of the demand for a specific finished good. Hence, the safety stocks necessary to keep high service level inventories of the intermediate goods would be relatively lean.

Three companies, all users of SmartForecasts, serve as interesting examples. The first is a chemical company, Bedoukian Research, which manufactures custom chemicals for various clients. Each of these “finished goods” is a unique combination of intermediate chemical compounds. Bedoukian begins its demand planning with a finished goods forecast, which drives the production schedule and allocation of essential production resources. This requires exercising considerable judgment, as finished goods demand changes dynamically.

Once these finished good forecasts are created, raw material requirements can be estimated via a bill of material disaggregation. Bedoukian combines these results with safety stock estimates, based on actual utilization rates and service level objectives to be achieved, to generate the complete, service level-driven forecast for raw materials. This has allowed Bedoukian meet its production requirements with significantly less inventory.

The second company manufactures the internal components for mobile phones, where finished goods are specialized combinations of these components. For example, an order may call for a certain number of phones with unique labels on the case. This is the finished good for this order. Everything that goes into that order, except for the label, is built out of standard components. Again, SmartForecasts will be used to keep lean, high service level inventories of the components. This company thought that the only way to manage component inventories was via bill of material aggregations. They are now looking at the actual utilization rate for the components and setting much leaner inventories while maintaining high component availability.

A third company, NKK Switches, which explored this topic in their recent webinar (see CFO Bud Schultz’ guest blog post), considered their products to be “unforecastable”. You can read more about it below, but overall NKK Switches was able to forecast components and meaningful aggregations of product families. By tracking forecast vs. actuals over several months, NKK was able to demonstrate the accuracy of its forecasts to its Asian factory suppliers, and convince them to shift from a “build-to-order” model to “build-to-forecast.” This change has resulted in dramatic reductions in lead times, in many cases cutting them in half, increasing customer satisfaction and the overall sales close rate.

The bottom line here is that there is a perfectly viable—I would say essential—method of demand forecasting for build-to-order businesses, setting high service levels for pivotal input resources. If you would like to know more, please drop me a note, at nelsonh at smartcorp dot com.

Nelson Hartunian, PhD, co-founded Smart Software, formerly served as President, and currently oversees it as Chairman of the Board. He has, at various times, headed software development, sales and customer service.

Leave a Comment

Related Posts

Do your statistical forecasts suffer from the wiggle effect?

Do your statistical forecasts suffer from the wiggle effect?

What is the wiggle effect? It’s when your statistical forecast incorrectly predicts the ups and downs observed in your demand history when there really isn’t a pattern. It’s important to make sure your forecasts don’t wiggle unless there is a real pattern. Here is a transcript from a recent customer where this issue was discussed:

How to Handle Statistical Forecasts of Zero

How to Handle Statistical Forecasts of Zero

A statistical forecast of zero can cause lots of confusion for forecasters, especially when the historical demand is non-zero. Sure, it’s obvious that demand is trending downward, but should it trend to zero?

Recent Posts

  • Fifteen questions that reveal how forecasts are computed in your companyFifteen questions that reveal how forecasts are computed in your company
    In a recent LinkedIn post, I detailed four questions that, when answered, will reveal how forecasts are being used in your business. In this article, we’ve listed questions you can ask that will reveal how forecasts are created. […]
  • Businessman and businesswoman reading and analysing spreadsheetThe top 3 reasons why your spreadsheet won’t work for optimizing reorder points on spare parts
    We often encounter Excel-based reorder point planning methods. In this post, we’ve detailed an approach that a customer used prior to proceeding with Smart. We describe how their spreadsheet worked, the statistical approaches it relied on, the steps planners went through each planning cycle, and their stated motivations for using (and really liking) this internally developed spreadsheet. […]
  • Style business group in classic business suits with binoculars and telescopes reproduce different forecasting methodsHow to interpret and manipulate forecast results with different forecast methods
    This blog explains how each forecasting model works using time plots of historical and forecast data. It outlines how to go about choosing which model to use. The examples below show the same history, in red, forecasted with each method, in dark green, compared to the Smart-chosen winning method, in light green. […]
  • Factory worker engineer working in factory using tablet computer to check maintenance boiler water pipe in factory.Why Spare Parts Tradeoff Curves are Mission-Critical for Parts Planning
    When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think. […]
  • What to do when a statistical forecast doesn’t make senseWhat to do when a statistical forecast doesn’t make sense
    Sometimes a statistical forecast just doesn’t make sense. Every forecaster has been there. They may double-check that the data was input correctly or review the model settings but are still left scratching their head over why the forecast looks very unlike the demand history. When the occasional forecast doesn’t make sense, it can erode confidence in the entire statistical forecasting process. […]

    Inventory Optimization for Manufacturers, Distributors, and MRO

    • Businessman and businesswoman reading and analysing spreadsheetThe top 3 reasons why your spreadsheet won’t work for optimizing reorder points on spare parts
      We often encounter Excel-based reorder point planning methods. In this post, we’ve detailed an approach that a customer used prior to proceeding with Smart. We describe how their spreadsheet worked, the statistical approaches it relied on, the steps planners went through each planning cycle, and their stated motivations for using (and really liking) this internally developed spreadsheet. […]
    • Factory worker engineer working in factory using tablet computer to check maintenance boiler water pipe in factory.Why Spare Parts Tradeoff Curves are Mission-Critical for Parts Planning
      When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think. […]
    • Portrait of factory worker woman with blue hardhat holds tablet and stand in spare parts workplace area. Concept of confident of working with spare parts planning software.Spare Parts Planning Isn’t as Hard as You Think
      When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think. […]
    • Worker on a automotive spare parts warehouse using inventory planning softwareService-Level-Driven Planning for Service Parts Businesses
      Service-Level-Driven Service Parts Planning is a four-step process that extends beyond simplified forecasting and rule-of-thumb safety stocks. It provides service parts planners with data-driven, risk-adjusted decision support. […]