Vraagprognose in een "Build to Order"-bedrijf

De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

We komen vaak in contact met potentiële klanten die beweren dat ze geen prognosesysteem kunnen gebruiken omdat ze een "build-to-order" productiebedrijf zijn. Ik vind dit een raadselachtig perspectief, want wat deze organisaties ook bouwen, er zijn grondstoffen of tussenproducten van een lager niveau nodig. Als die invoer op een lager niveau niet beschikbaar is wanneer een bestelling voor het afgewerkte product wordt ontvangen, kan de bestelling niet worden gebouwd. Bijgevolg kan de bestelling worden geannuleerd en de bijbehorende inkomsten verloren gaan.

Ik ben het ermee eens dat in een dergelijke omgeving het voorspellen van het eindproduct niet altijd mogelijk of bijzonder nuttig is. Soms is het nuttig, maar niet voldoende. Het is in ieder geval van cruciaal belang om ervoor te zorgen dat de onderliggende grondstoffen en halffabrikaten die in het eindproduct gaan, beschikbaar zijn. De vraag ernaar kan zeker worden voorspeld.

Het doel van de organisatie zou zijn om voorraden op serviceniveau aan te houden voor deze tussenproducten die hoog maar niet onbetaalbaar zijn. Planners zullen optimale voorraadniveaus voor deze materialen moeten instellen, waarbij ze de serviceniveau-eisen afwegen tegen het beschikbare budget. Aangezien een bepaald tussenproduct kan dienen als input voor meer dan één gereed product, zou de volatiliteit van de vraag naar het tussenproduct kleiner zijn dan de volatiliteit van de vraag naar een specifiek gereed product. Daarom zouden de veiligheidsvoorraden die nodig zijn om voorraden van halffabrikaten op hoog serviceniveau aan te houden relatief mager zijn.

Drie bedrijven, alle gebruikers van SmartForecasts, dienen als interessante voorbeelden. Het eerste is een chemiebedrijf, Bedoukian Research, dat voor verschillende opdrachtgevers chemicaliën op maat maakt. Elk van deze "gereed product" is een unieke combinatie van tussenliggende chemische verbindingen. Bedoukian begint zijn vraagplanning met een prognose voor gereed product, die het productieschema en de toewijzing van essentiële productiemiddelen bepaalt. Dit vereist een behoorlijk beoordelingsvermogen, aangezien de vraag naar afgewerkte goederen dynamisch verandert.

Zodra deze afgewerkte goede prognoses zijn gemaakt, kan de behoefte aan grondstoffen worden geschat via een stuklijstdesaggregatie. Bedoukian combineert deze resultaten met veiligheidsvoorraadschattingen, gebaseerd op werkelijke bezettingsgraden en te behalen serviceniveaudoelstellingen, om de volledige, serviceniveaugestuurde prognose voor grondstoffen te genereren. Hierdoor kan Bedoukian aan zijn productie-eisen voldoen met aanzienlijk minder voorraad.

Het tweede bedrijf vervaardigt de interne componenten voor mobiele telefoons, waarbij eindproducten gespecialiseerde combinaties van deze componenten zijn. Een bestelling kan bijvoorbeeld een bepaald aantal telefoons vereisen met unieke labels op de hoes. Dit is het eindproduct voor deze bestelling. Alles wat in die volgorde komt, behalve het label, is opgebouwd uit standaardcomponenten. Nogmaals, SmartForecasts zal worden gebruikt om gestroomlijnde voorraden van de componenten op hoog serviceniveau bij te houden. Dit bedrijf dacht dat de enige manier om componentenvoorraden te beheren, was door middel van aggregaties van stuklijsten. Ze kijken nu naar de werkelijke bezettingsgraad van de componenten en stellen veel kleinere voorraden vast terwijl ze een hoge beschikbaarheid van componenten behouden.

Een derde bedrijf, NKK Switches, verkende dit onderwerp in hun recente webinar (zie Gastblogpost van CFO Bud Schultz), beschouwden hun producten als "onvoorspelbaar". U kunt er hieronder meer over lezen, maar over het algemeen was NKK Switches in staat om componenten en zinvolle aggregaties van productfamilies te voorspellen. Door prognoses versus werkelijke waarden gedurende meerdere maanden bij te houden, kon NKK de nauwkeurigheid van zijn prognoses aan zijn Aziatische fabrieksleveranciers aantonen en hen overtuigen om over te stappen van een "build-to-order"-model naar "build-to-forecast". Deze verandering heeft geresulteerd in een drastische verkorting van de doorlooptijden, in veel gevallen zelfs gehalveerd, waardoor de klanttevredenheid en het algehele verkooppercentage zijn toegenomen.

Waar het hier op neerkomt, is dat er een volkomen levensvatbare – ik zou zeggen essentiële – methode voor vraagvoorspelling voor op bestelling gemaakte bedrijven bestaat, waarbij hoge serviceniveaus worden vastgesteld voor essentiële inputbronnen. Als je meer wilt weten, stuur me dan een berichtje, op nelsonh op smartcorp dot com.

Nelson Hartunian, PhD, was medeoprichter van Smart Software, was voorheen President en houdt er momenteel toezicht op als voorzitter van de raad van bestuur. Hij heeft op verschillende momenten leiding gegeven aan softwareontwikkeling, verkoop en klantenservice.

Laat een reactie achter

gerelateerde berichten

Make AI-Driven Inventory Optimization an Ally for Your Organization

Make AI-Driven Inventory Optimization an Ally for Your Organization

In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks.

Dagelijkse vraagscenario's

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Constructief spelen met Digital Twins

Constructief spelen met Digital Twins

Degenen onder u die actuele onderwerpen volgen, zullen bekend zijn met de term ‘digitale tweeling’. Degenen die het te druk hebben gehad met hun werk, willen misschien verder lezen en bijpraten. Hoewel er verschillende definities van een digitale tweeling bestaan, is er één die goed werkt: een digitale tweeling is een dynamische virtuele kopie van een fysiek bezit, proces, systeem of omgeving die er hetzelfde uitziet en zich hetzelfde gedraagt als zijn tegenhanger in de echte wereld. Een digitale tweeling neemt gegevens op en repliceert processen, zodat u mogelijke prestatieresultaten en problemen kunt voorspellen die het echte product kan ondergaan.

recente berichten

  • Make AI-Driven Inventory Optimization an Ally for Your OrganizationMake AI-Driven Inventory Optimization an Ally for Your Organization
    In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks. […]
  • The Importance of Clear Service Level Definitions in Inventory ManagementThe Importance of Clear Service Level Definitions in Inventory Management
    Inventory optimization software that supports what-if analysis will expose the tradeoff of stockouts vs. excess costs of varying service level targets. But first it is important to identify how “service levels” is interpreted, measured, and reported. This will avoid miscommunication and the false sense of security that can develop when less stringent definitions are used. Clearly defining how service level is calculated puts all stakeholders on the same page. This facilitates better decision-making. […]
  • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
    Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
  • De kosten als u niets doet met uw voorraadplanningssystemenDe kosten van spreadsheetplanning
    Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën. […]
  • Simple Inventory Optimization is Good Except When It Isn’t FHDEenvoudig is goed, behalve als dat niet het geval is
    In this blog, we are steering the conversation towards the transformative potential of technology in inventory management. The discussion centers around the limitations of simple thinking in managing inventory control processes and the necessity of adopting systematic software solutions. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
      MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]