Too Much or Too Little Inventory?

The Smart Forecaster

Pursuing best practices in demand planning,

forecasting and inventory optimization

Do you know which items have too much or too little inventory? What if you knew? How would you go about cutting overstocks while still ensuring a competitive service level? Would you be able to reduce stockouts without incurring a prohibitively expensive inventory increase? How would these changes impact service levels, costs and turns—for individual items, groups of items and overall?

Most companies know they have too much or too little inventory but lack a key ingredient for optimizing inventory: Service Level-Driven Demand Planning. To take action, you must know how much inventory is needed to satisfy the service level you require. More fundamentally, you need to know the specific service level that will result from your current inventory policies, the gap to be addressed and its financial implications.

Many organizations, especially those with intermittent demand, find this to be an exceptionally challenging trial and error process.

Moving to a service level-driven approach will overcome this challenge and ensure that rebalancing inventory improves service level performance at a lower cost. Start with the most accurate demand forecast possible, calibrate for forecast risk and then determine your optimal inventory position. In a recent webinar, I demonstrated Service Level-Driven Demand Planning and how SmartForecasts can be used to drive this process:

1. Measure the service levels that will be achieved at current inventory levels and with your current inventory policy.
2. Identify items that will achieve high service levels (98%+) but at prohibitively high cost.
3. Identify items that are at high risk of stockout (service levels < 75%).
4. Run multiple what-if scenarios based on a different prioritization of service levels by item or item groups. Choose the scenario that optimizes financial constraints with service objectives.
5. Quantify cash savings from reducing overstocks and the costs to increase inventory when service levels are unacceptably low.
6. Take action to establish new service level-driven reorder points, order quantities and inventory levels to meet your service targets and budget.

To view the webinar replay, please click here and complete the registration request.

Gregory Hartunian serves as President of Smart Software and as a member of the Board of Directors. A graduate of The F.W. Olin School for Business at Babson College, he formerly served as Vice President, Sales and Operations.

Leave a Comment

Related Posts

Do your statistical forecasts suffer from the wiggle effect?

Do your statistical forecasts suffer from the wiggle effect?

What is the wiggle effect? It’s when your statistical forecast incorrectly predicts the ups and downs observed in your demand history when there really isn’t a pattern. It’s important to make sure your forecasts don’t wiggle unless there is a real pattern. Here is a transcript from a recent customer where this issue was discussed:

How to Handle Statistical Forecasts of Zero

How to Handle Statistical Forecasts of Zero

A statistical forecast of zero can cause lots of confusion for forecasters, especially when the historical demand is non-zero. Sure, it’s obvious that demand is trending downward, but should it trend to zero?

Recent Posts

  • Fifteen questions that reveal how forecasts are computed in your companyFifteen questions that reveal how forecasts are computed in your company
    In a recent LinkedIn post, I detailed four questions that, when answered, will reveal how forecasts are being used in your business. In this article, we’ve listed questions you can ask that will reveal how forecasts are created. […]
  • Businessman and businesswoman reading and analysing spreadsheetThe top 3 reasons why your spreadsheet won’t work for optimizing reorder points on spare parts
    We often encounter Excel-based reorder point planning methods. In this post, we’ve detailed an approach that a customer used prior to proceeding with Smart. We describe how their spreadsheet worked, the statistical approaches it relied on, the steps planners went through each planning cycle, and their stated motivations for using (and really liking) this internally developed spreadsheet. […]
  • Style business group in classic business suits with binoculars and telescopes reproduce different forecasting methodsHow to interpret and manipulate forecast results with different forecast methods
    This blog explains how each forecasting model works using time plots of historical and forecast data. It outlines how to go about choosing which model to use. The examples below show the same history, in red, forecasted with each method, in dark green, compared to the Smart-chosen winning method, in light green. […]
  • Factory worker engineer working in factory using tablet computer to check maintenance boiler water pipe in factory.Why Spare Parts Tradeoff Curves are Mission-Critical for Parts Planning
    When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think. […]
  • What to do when a statistical forecast doesn’t make senseWhat to do when a statistical forecast doesn’t make sense
    Sometimes a statistical forecast just doesn’t make sense. Every forecaster has been there. They may double-check that the data was input correctly or review the model settings but are still left scratching their head over why the forecast looks very unlike the demand history. When the occasional forecast doesn’t make sense, it can erode confidence in the entire statistical forecasting process. […]

    Inventory Optimization for Manufacturers, Distributors, and MRO

    • Businessman and businesswoman reading and analysing spreadsheetThe top 3 reasons why your spreadsheet won’t work for optimizing reorder points on spare parts
      We often encounter Excel-based reorder point planning methods. In this post, we’ve detailed an approach that a customer used prior to proceeding with Smart. We describe how their spreadsheet worked, the statistical approaches it relied on, the steps planners went through each planning cycle, and their stated motivations for using (and really liking) this internally developed spreadsheet. […]
    • Factory worker engineer working in factory using tablet computer to check maintenance boiler water pipe in factory.Why Spare Parts Tradeoff Curves are Mission-Critical for Parts Planning
      When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think. […]
    • Portrait of factory worker woman with blue hardhat holds tablet and stand in spare parts workplace area. Concept of confident of working with spare parts planning software.Spare Parts Planning Isn’t as Hard as You Think
      When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think. […]
    • Worker on a automotive spare parts warehouse using inventory planning softwareService-Level-Driven Planning for Service Parts Businesses
      Service-Level-Driven Service Parts Planning is a four-step process that extends beyond simplified forecasting and rule-of-thumb safety stocks. It provides service parts planners with data-driven, risk-adjusted decision support. […]