Call an Audible to Proactively Counter Supply Chain Noise

 

You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change. Now your old policies (reorder points, safety stocks, Min/Max levels, etc.)  have been obsoleted – just when you think you’d got them right.   Leveraging advanced planning and inventory optimization software gives you the ability to proactively address ever-changing outside influences on your inventory and demand.  To do so, you’ll need to regularly recalibrate stocking parameters based on ever-changing demand and lead times.

Recently, some potential customers have expressed concern that by regularly modifying inventory control parameters they are introducing “noise” and adding complication to their operations. A visitor to our booth at last week’s Microsoft Dynamics User Group Conference commented:

“We don’t want to jerk around the operations by changing the policies too often and introducing noise into the system. That noise makes the system nervous and causes confusion among the buying team.”

This view is grounded in yesterday’s paradigms.  While you should generally not change an immediate production run, ignoring near-term changes to the policies that drive future production planning and order replenishment will wreak havoc on your operations.   Like it or not, the noise is already there in the form of extreme demand and supply chain variability.  Fixing replenishment parameters, updating them infrequently, or only reviewing at the time of order means that your Supply Chain Operations will only be able to react to problems rather than proactively identify them and take corrective action.

Modifying the policies with near-term recalibrations is adapting to a fluid situation rather than being captive to it.  We can look to this past weekend’s NFL games for a simple analogy. Imagine the quarterback of your favorite team consistently refusing to call an audible (change the play just before the ball is snapped) after seeing the defensive formation.  This would result in lots of missed opportunities, inefficiency, and stalled drives that could cost the team a victory.  What would you want your quarterback to do?

Demand, lead times, costs, and business priorities often change, and as these last 18 months have proved they often change considerably.  As a Supply Chain leader, you have a choice:  keep parameters fixed resulting in lots of knee-jerk expedites and order cancellations, or proactively modify inventory control parameters.  Calling the audible by recalibrating your policies as demand and supply signals change is the right move.

Here is an example. Suppose you are managing a critical item by controlling its reorder point (ROP) at 25 units and its order quantity (OQ) at 48. You may feel like a rock of stability by holding on to those two numbers, but by doing so you may be letting other numbers fluctuate dramatically.  Specifically, your future service levels, fill rates, and operating costs could all be resetting out of sight while you fixate on holding onto yesterday’s ROP and OQ.  When the policy was originally determined, demand was stable and lead times were predictable, yielding service levels of 99% on an important item.   But now demand is increasing and lead times are longer.  Are you really going to expect the same outcome (99% service level) using the same sets of inputs now that demand and lead times are so different?  Of course not.  Suppose you knew that given the recent changes in demand and lead time, in order to achieve the same service level target of 99%, you had to increase the ROP to 35 units.  If you were to keep the ROP at 25 units your service level would fall to 92%.  Is it better to know this in advance or to be forced to react when you are facing stockouts?

What inventory optimization and planning software does is make visible the connections between performance metrics like service rate and control parameters like ROP and ROQ. The invisible becomes visible, allowing you to make reasoned adjustments that keep your metrics where you need them to be by adjusting the control levers available for your use.  Using probabilistic forecasting methods will enable you to generate Key Performance Predictions (KPPs) of performance and costs while identifying near-term corrective actions such as targeted stock movements that help avoid problems and take advantage of opportunities. Not doing so puts your supply chain planning in a straightjacket, much like the quarterback who refuses to audible.

Admittedly, a constantly-changing business environment requires constant vigilance and occasional reaction. But the right inventory optimization and demand forecasting software can recompute your control parameters at scale with a few mouse clicks and clue your ERP system how to keep everything on course despite the constant turbulence.  The noise is already in your system in the form of demand and supply variability.  Will you proactively audible or stick to an older plan and cross your fingers that things will work out fine?

 

 

Leave a Comment
Related Posts
You Need to Team up with the Algorithms

You Need to Team up with the Algorithms

This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software.

Using Key Performance Predictions to Plan Stocking Policies

Using Key Performance Predictions to Plan Stocking Policies

I can’t imagine being an inventory planner in spare parts, distribution, or manufacturing and having to create safety stock levels, reorder points, and order suggestions without using key performance predictions of service levels, fill rates, and inventory costs.

Top Differences Between Inventory Planning for Finished Goods and for MRO and Spare Parts

Top Differences Between Inventory Planning for Finished Goods and for MRO and Spare Parts

In today’s competitive business landscape, companies are constantly seeking ways to improve their operational efficiency and drive increased revenue. Optimizing service parts management is an often-overlooked aspect that can have a significant financial impact. Companies can improve overall efficiency and generate significant financial returns by effectively managing spare parts inventory. This article will explore the economic implications of optimized service parts management and how investing in Inventory Optimization and Demand Planning Software can provide a competitive advantage.

Electric Power Utility Selects Smart Software for Inventory Optimization

Smart IP&O goes live in 90 days and reduces inventory by $9 million in the first six months

Belmont, MA., 2021Smart Software, Inc. provider of industry-leading demand forecasting, planning, and inventory optimization solutions, today announced its selection, purchase, and implementation of its flagship product, Smart IP&O, by a major US electric utility.  The platform is now utilized to plan over 250,000 spare parts valued at over $500,000,000 across the Utility’s multi-echelon distribution network.  Smart IP&O was implemented in just 90 days and has been credited for reducing inventory by $9 million while maintaining service levels within its first six months of operation.

The implementation of Smart IP&O is part of the Utility’s Strategic Supply Chain Optimization (SCO) initiative to replace twenty-year-old legacy software. Subsequent phases of the Smart Software implementation will integrate Smart IP&O to their IBM Maximo Asset Management system.

Key to the selection and success of the project to-date is Smart Software’s proven track record planning intermittent demand that is prevalent on spare and service parts.  Intermittent or lumpy demand is characterized by frequent periods of zero demand interspersed with large spikes of non-zero demand that seemingly occur at random.  The Utility estimates that over 80% of its parts have intermittent demand.  Smart Software leverages probabilistic forecasting that creates thousands of possible future outcomes of demand and lead times. The technology’s proven ability to accurately forecast the required inventory to achieve the high levels of service the Utility requires and to do so at scale were critical differentiators.

Implementation was accomplished within 90 days of project start.  Over the ensuing six months, Smart IP&O enabled the adjustment of stocking parameters for several thousand items, resulting in inventory reductions of $9.0 million while sustaining target service levels.  Significant additional savings – and improvement in service levels for critical spares – are anticipated in the coming year as stocks for additional facilities are brought into the system.

“We have had many very strong successes helping customers in asset-intensive industries optimize their parts inventory,” said Greg Hartunian, CEO of Smart Software.  “Combined with the Utility’s support from the top-down, hands-on involvement from IT, and user enthusiasm to embrace a new approach, we had a great recipe for success.  We look forward to building on our early success to deliver even more value together.”

About Smart Software, Inc.
Founded in 1981, Smart Software, Inc. is a leader in providing businesses with enterprise-wide demand forecasting, planning, and inventory optimization solutions.  Smart Inventory Planning & Optimization is a multi-tenant web platform that gives demand planners the tools to handle sales seasonality, promotions, new and aging products, multi-dimensional hierarchies, and intermittently demanded service parts and capital goods items.  The solution provides inventory managers with accurate estimates of the optimal inventory and safety stock required to meet future orders and achieve desired service levels.  Smart Software is headquartered in Belmont, Massachusetts, and can be found at www.smartcorp.com.

 

SmartForecasts and Smart IP&O are registered trademarks of Smart Software, Inc.  All other trademarks are the property of their respective owners.


For more information, please contact Smart Software,Inc., Four Hill Road, Belmont, MA 02478.
Phone: 1-800-SMART-99 (800-762-7899); E-mail: info@smartcorp.com

 

Smart Software Completes SOC 2 Type II Audit. Secure cloud platform

Smart Software Completes SOC 2 Type II Security Audit

Belmont, Mass., June 1, 2020 – Smart Software, Inc. announced  today that the company completed its Service Organization Control for Service Organizations (SOC) Audit, delivering the highest level of data security and reliability.

“All of Smart Software’s services depend on a foundation of safe, secure, and private storage and transfer of information” said Chief Technology Officer, Sreekumar Menon.  “Trust and data security are table stakes now for any solution offering cloud based analytics, forecasting, demand modeling, and inventory planning. Since day 1 of our cloud journey, we’ve made considerable investments in order to ensure a secure and reliable environment for our customers.  The completion of this audit validates these efforts.”

Companies completing the SOC 2 Type II audit have the option to be judged on one or more categories; Smart Software met or exceeded the industry-leading standard in all four categories listed below:

  • Security – Verifying the system is protected against unauthorized access, use, or modification to meet the entity’s commitments and system requirements.
  • Availability – Verifying the system is available for operation and use to meet the entity’s commitments and system requirements.
  • Processing Integrity – Verifying the system processing is complete, valid, accurate, timely, and authorized to meet the entity’s commitments and system requirements.
  • Confidentiality – Verifying that information designated as confidential is protected to meet the entity’s commitments and system requirements.

SOC 2 examinations may only be performed by a licensed CPA firm. Kahn, Litwin, Renza & Co., Ltd (“KLR”), a leading provider of SOC services, performed the service audit of Smart Software. ”By regularly attaining a SOC 2 certification, Smart Software continues to demonstrate its commitment to its Smart IP&O customers by building trust and confidence in the services that it provides relevant to Security, Availability, Processing Integrity and Confidentiality.” said Daniel M. Andrea, Partner and SOC Services Practice Leader of KLR.

About Smart Software, Inc.

Smart Software, a leading innovator in demand planning, statistical forecasting, and inventory optimization software, offers Smart IP&O, an integrated suite of cloud demand planning, inventory optimization and supply chain analytics applications.  Founded in 1981, Smart serves a wide range of manufacturing, distribution, and transportation organizations including The Home Depot, FedEx,  DisneyLand Resorts, MARS, BC Transit, Metro-North Railroad and many, many more.

 

Learn more at:  www.smartcorp.com


For more information, please contact Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Phone: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

Smart Software Senior VP/Research to present at Military Operations Research Society (MORS) Emerging Techniques Forum

Smart Software announced today that its co-founder and Senior VP of Research, Dr. Thomas Willemain, has been selected to present at the prestigious MORS Emerging Techniques Forum December 4 – 5, 2019 in Alexandria, VA.

MORS is the Military Operations Research Society, funded by the Navy, Army, Air Force, Marine Corps, Office of the Secretary of the Defense and the Department of Homeland Security. Its mission is to enhance the quality of analysis that informs national and homeland security decisions.

The Emerging Techniques Forum provides the defense analytic community with extensive content on emerging analytic topics and techniques. Willemain will be one of a small number of experts speaking in the Computational Advances in Analytics track. This track addresses new tools and techniques that leverage increased computing power and data availability.

Willemain’s topic will be “Validating Demand Scenario Generators for Inventory Optimization.” This research is part of Smart Software’s continuing work to push the state of the art in managing fleets of spare parts and hard to forecast items.  These advancements will be incorporated into Smart IP&O, the company’s multi-tenant web based platform for forecasting, inventory planning and optimization.  The research began with Dr. Willemain’s doctoral students at Rensselaer Polytechnic Institute, where he remains active as Professor Emeritus of Industrial and Systems Engineering.

 

About Smart Software, Inc.

Founded in 1981, Smart Software, Inc. is a leader in providing businesses with enterprise-wide demand forecasting, planning and inventory optimization solutions.  Smart Software’s demand forecasting and inventory optimization solutions have helped thousands of users worldwide, including customers at mid-market enterprises and Fortune 500 companies, such as Mitsubishi, Siemens, Disney, FedEx, MARS, and The Home Depot.  Smart Inventory Planning & Optimization gives demand planners the tools to handle sales seasonality, promotions, new and aging products, multi-dimensional hierarchies, and intermittently demanded service parts and capital goods items.  It also provides inventory managers with accurate estimates of the optimal inventory and safety stock required to meet future orders and achieve desired service levels.  Smart Software is headquartered in Belmont, Massachusetts and can be found on the World Wide Web at www.smartcorp.com.

SmartForecasts and Smart IP&O are registered trademarks of Smart Software, Inc.  All other trademarks are the property of their respective owners.


For more information, please contact Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Phone: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

Reveal Your Real Inventory Planning and Forecasting Policy by Answering These 10 Questions

The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

In another blog we posed the question:  How can you be sure that you really have a policy for inventory planning and demand forecasting? We explained how an organization’s lack of understanding on the basics (how a forecast is created, how safety stock buffers are determined, and how/why these values are adjusted) contributes to poor forecast accuracy, misallocated inventory, and lack of trust in the whole process.

In this blog, we review 10 specific questions you can ask to uncover what’s really happening at your company. We detail the typical answers provided when a forecasting/inventory planning policy doesn’t really exist, explain how to interpret these answers, and offer some clear advice on what to do about it.

Always start with a simple hypothetical example. Focusing on a specific problem you just experienced is bound to provoke defensive answers that hide the full story. The goal is to uncover the actual approach used to plan inventory and forecasts that has been baked into the mental math or spreadsheets.   Here is an example:

Suppose you have 100 units on hand, the lead time to replenish is 3 months, and the average monthly demand is 20 units?   When should you order more?  How much would you order? How will your answer change if expected receipts of 10 per month were scheduled to arrive?  How will your answer change if the item is the item is an A, B, or C item, the cost of the item is high or low, lead time of the item is long or short?  Simply put, when you schedule a production job or place a new order with a supplier, why did you do it? What triggered the decision to get more?  What planning inputs were considered?

When getting answers to the above question, focus on uncovering answers to the following questions:

1. What is the underlying replenishment approach? This will typically be one of Min/Max, forecast/safety stock, Reorder Point/Order Quantity, Periodic Review/Order Up To or even some odd combination

2. How are the planning parameters, such as demand forecasts, reorder points, or Min/Max, actually calculated? It’s not enough to know that you use Min/Max.  You have to know exactly how these values are calculated. Answers such as “We use history” or “We use an average” are not specific enough.   You’ll need answers that clearly outline how history is used.  For example, “We take an average of the last 6 months, divide that by 30 to get a daily average, and then multiply that by the lead time in days.  For ‘A’ items we then multiply the lead time average by 2 and for ‘B’ items we use a multiplier of 1.5.” (While that is not an especially good technical approach, at least it has a clear logic.)

Once you have a policy well-defined, you can identify its weaknesses in order to improve it.  But if the answer provided doesn’t get much further past “We use history”, then you don’t have a policy to start with.   Answers will often reveal that different planners use history in different ways.  Some may only consider the most recent demand, others might stock according to the average of the highest demand periods, etc.  In other words, you may find that you actually have multiple ill-conceived “policies”.

3. Are forecasts used to drive replenishment planning and if so, how? Many companies will say they forecast, but their forecasts are calculated and used differently. Is the forecast used to predict what on hand inventory will be in the future, resulting in an order being triggered?  Or is it used to derive a reorder point but not to predict when to order (i.e. I predict we’ll sell 10 a week so to help protect against stock out, I’ll order more when on hand gets to 15)? Is it used as a guide for the planner to help subjectively determine when they should order more?  Is it used to set up blanket orders with suppliers?  Some use it to drive MRP. You’ll need to know these specifics.  A thorough answer to this question might look like this: “My forecast is 10 per week and my lead time is 3 weeks so I make my reorder point a multiple of that forecast, typically 2 x lead time demand or 60 unit for important items and I use a smaller multiple for less important items.  (Again, not a great technical approach, but clear.)

4.  What technique is actually used to generate the forecast? Is it an average, a trending model such as double exponential smoothing, a seasonal model? Does the choice of technique change depend on the type of demand data or when new demand data is available? (Spare parts and high-volume items have very different demand patterns.) How do you go about selecting the forecast model? Is this process automated?  How often is the choice of model reconsidered?  How often are the model parameters recomputed? What is the process used to reconsider your approach?  The answer here documents how the baseline forecasts are produced.  Once determined, you can conduct an analysis to identify whether other forecasting methods would improve forecast accuracy.  If you aren’t documenting forecast accuracy and conducting “forecast value add” analysis then you aren’t in a position to properly assess whether the forecasts being produced are the best that they can be.  You’ll miss out on opportunities to improve the process, increase forecast accuracy, and educate the business on what type of forecast error is normal and should be expected.

5. How do you use safety stock? Notice the question was not “Do you use safety stock?” In this context, and to keep it simple, the term “safety stock” means stock used to buffer inventory against supply and demand variability.  All companies use buffering approaches in some way.  There are some exceptions though.  Maybe you are a job shop manufacturer that procures all parts to order and your customers are completely fine waiting weeks or months for you to source material, manufacture, QA, and ship.  Or maybe you are high-volume manufacturer with tons of buying power so your suppliers set up local warehouses that are stocked full and ready to provide inventory to you almost immediately.  If these descriptions don’t describe your company, you will definitely have some sort of buffer to protect against demand and supply variability.  You may not use the “safety stock” field in your ERP but you are definitely buffering.

Answers might be provided such as “We don’t use safety stock because we forecast.”  Unfortunately, a good forecast will have a 50/50 chance of being over/under the actual demand.  This means you’ll incur a stock out 50% of the time without a safety stock buffer added to the forecast.  Forecasts are only perfect when there is no randomness. Since there is always randomness, you’ll need to buffer if you don’t want to have abysmal service levels.

If the answer isn’t revealed, you can probe a bit more into how the varying replenishment levers are used to add possible buffers which leads to questions 6 & 7.

6. Do you ever increase the lead time or order earlier than you truly need to?
In our hypothetical example, your supplier typically takes 4 weeks to deliver and is pretty consistent. But to protect against stockouts your buyer routinely orders 6 weeks out instead of 4 weeks.  The safety stock field in your ERP system might be set to zero because “we don’t use safety stock”, but in reality, the buyer’s ordering approach just added 2 weeks of buffer stock.

7. Do you pad the demand forecast?
In our example, the planner expects to consume 10 units per month but “just in case” enters a forecast of 20 per month.  The safety stock field in the MRP system is left blank but the now disguised buffer stock has been smuggled into the demand forecast.  This is a mistake that introduces “forecast bias.”  Not only will your forecasts be less accurate but if the bias isn’t accounted for and safety stock is added by other departments, you will overstock.

The ad-hoc nature of the above approaches compounds the problems by not considering the actual demand or supply variability of the item. For example, the planner might simply make a rule of thumb that doubles the lead time forecast for important items.  One-size doesn’t fit all when it comes to inventory management.  This approach will substantially overstock the predictable items while substantially understocking the intermittently demanded items. You can read “Beware of Simple Rules of Thumb for Managing Inventory” to learn more about why this type of approach is so costly.

The ad-hoc nature of the approaches also ignores what happens the company is faced with a huge overstock or stock out. When trying to understand what happened, the stated policies will be examined. In the case of an overstock, the system will show zero safety stock.  The business leaders will assume they aren’t carrying any safety stock, scratch their heads, and eventually just blame the forecast, declare “Our business can’t be forecasted” and stumble on. They may even blame the supplier for shipping too early and making them hold more than needed. In the case of a stock out, they will think they aren’t carrying enough and arbitrarily add more stock across many items not realizing there is in fact lots of extra safety stock baked into process.  This makes it more likely inventory will need to be written off in the future.

8. What is the exact inventory terminology used? Define what you mean by safety stock, Min, reorder point, EOQ, etc.  While there are standard technical definitions it’s possible that something differs, and miscommunication here will be problematic.  For example, some companies refer to Min as the amount of inventory needed to satisfy lead time demand while some may define Min as inclusive of both lead time demand and safety stock to buffer against demand variability. Others may mean the minimum order quantity.

9. Is on hand inventory consistent with the policy? When your detective work is done and everything is documented, open your spreadsheet or ERP system and look at the on-hand quantity. It should be more or less in line with your planning parameters (i.e. if Min/Max is 20/40 and typical lead time demand is 10, then you should have roughly 10 to 40 units on hand at any given point in time.  Surprisingly, for many companies there is often a huge inconsistency. We have observed situations where the Min/Max setting is 20/40 but the on-hand inventory is 300+.  This indicates that whatever policy has been prescribed just isn’t being followed.   That’s a bigger problem.

10. What are you going to do next?

Demand forecasting and inventory stocking policy need to be well-defined processes that are understood and accepted by everybody involved.  There should be zero mystery.

To do this right, the demand and supply variability must be analyzed and used to compute the proper levels of safety stock.   Adding buffers without an implicit understanding of what each additional unit of buffer stock is buying you in terms of service is like arbitrarily throwing a handful of ingredients into a cake recipe.  A small change in ingredients can have a huge impact on what comes out of the oven – one bite too sweet but the next too sour.  It is the same with inventory management.  A little extra here, a little less there, and pretty soon you find yourself with costly excess inventory in some areas, painful shortages in others, no idea how you got there, and with little guidance on how to make things better.

Modern inventory optimization and demand planning software with its advanced analytics and strong basis in forecast analysis can help a good deal with this problem. But even the best software won’t help if it is used inconsistently.

Leave a Comment

Related Posts

You Need to Team up with the Algorithms

You Need to Team up with the Algorithms

This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software.

Using Key Performance Predictions to Plan Stocking Policies

Using Key Performance Predictions to Plan Stocking Policies

I can’t imagine being an inventory planner in spare parts, distribution, or manufacturing and having to create safety stock levels, reorder points, and order suggestions without using key performance predictions of service levels, fill rates, and inventory costs.

Top Differences Between Inventory Planning for Finished Goods and for MRO and Spare Parts

Top Differences Between Inventory Planning for Finished Goods and for MRO and Spare Parts

In today’s competitive business landscape, companies are constantly seeking ways to improve their operational efficiency and drive increased revenue. Optimizing service parts management is an often-overlooked aspect that can have a significant financial impact. Companies can improve overall efficiency and generate significant financial returns by effectively managing spare parts inventory. This article will explore the economic implications of optimized service parts management and how investing in Inventory Optimization and Demand Planning Software can provide a competitive advantage.

Recent Posts

  • Managing Spare Parts Inventory: Best PracticesManaging Spare Parts Inventory: Best Practices
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 Ways to Improve Supply Chain Decision Speed
    The promise of a digital supply chain has transformed how businesses operate. At its core, it can make rapid, data-driven decisions while ensuring quality and efficiency throughout operations. However, it's not just about having access to more data. Organizations need the right tools and platforms to turn that data into actionable insights. This is where decision-making becomes critical, especially in a landscape where new digital supply chain solutions and AI-driven platforms can support you in streamlining many processes within the decision matrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Causes of Overstocking and Practical Solutions
    Managing inventory effectively is critical for maintaining a healthy balance sheet and ensuring that resources are optimally allocated. Here is an in-depth exploration of the main causes of overstocking, their implications, and possible solutions. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Mastering Smart IP&O for Better Inventory Management.
    Effective supply chain and inventory management are essential for achieving operational efficiency and customer satisfaction. This blog provides clear and concise answers to some basic and other common questions from our Smart IP&O customers, offering practical insights to overcome typical challenges and enhance your inventory management practices. Focusing on these key areas, we help you transform complex inventory issues into strategic, manageable actions that reduce costs and improve overall performance with Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 Key Demand Planning Trends Shaping the Future
    Demand planning goes beyond simply forecasting product needs; it's about ensuring your business meets customer demands with precision, efficiency, and cost-effectiveness. Latest demand planning technology addresses key challenges like forecast accuracy, inventory management, and market responsiveness. In this blog, we will introduce critical demand planning trends, including data-driven insights, probabilistic forecasting, consensus planning, predictive analytics, scenario modeling, real-time visibility, and multilevel forecasting. These trends will help you stay ahead of the curve, optimize your supply chain, reduce costs, and enhance customer satisfaction, positioning your business for long-term success. […]

    Inventory Optimization for Manufacturers, Distributors, and MRO

    • Managing Spare Parts Inventory: Best PracticesManaging Spare Parts Inventory: Best Practices
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovating the OEM Aftermarket with AI-Driven Inventory Optimization
      The aftermarket sector provides OEMs with a decisive advantage by offering a steady revenue stream and fostering customer loyalty through the reliable and timely delivery of service parts. However, managing inventory and forecasting demand in the aftermarket is fraught with challenges, including unpredictable demand patterns, vast product ranges, and the necessity for quick turnarounds. Traditional methods often fall short due to the complexity and variability of demand in the aftermarket. The latest technologies can analyze large datasets to predict future demand more accurately and optimize inventory levels, leading to better service and lower costs. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
      Utilities in the electrical, natural gas, urban water, and telecommunications fields are all asset-intensive and reliant on physical infrastructure that must be properly maintained, updated, and upgraded over time. Maximizing asset uptime and the reliability of physical infrastructure demands effective inventory management, spare parts forecasting, and supplier management. A utility that executes these processes effectively will outperform its peers, provide better returns for its investors and higher service levels for its customers, while reducing its environmental impact. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentering Act: Spare Parts Timing, Pricing, and Reliability
      In this article, we'll walk you through the process of crafting a spare parts inventory plan that prioritizes availability metrics such as service levels and fill rates while ensuring cost efficiency. We'll focus on an approach to inventory planning called Service Level-Driven Inventory Optimization. Next, we'll discuss how to determine what parts you should include in your inventory and those that might not be necessary. Lastly, we'll explore ways to enhance your service-level-driven inventory plan consistently. […]

      The average monthly demand is 20 unitsand the lead time is 90 days When should you order more? Cloud computing companies with unique server and hardware parts, e-commerce, online retailers, home and office supply companies, onsite furniture, power utilities, intensive assets maintenance or warehousing for water supply companies have increased their activity during the pandemic. Garages selling car parts and truck parts, pharmaceuticals, healthcare or medical supply manufacturers and safety product suppliers are dealing with increasing demand. Delivery service companies, cleaning services, liquor stores and canned or jarred goods warehouses, home improvement stores, gardening suppliers, yard care companies, hardware, kitchen and baking supplies stores, home furniture suppliers with high demand are facing stockouts, long lead times, inventory shortage costs, higher operating costs and ordering costs.