The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

You can’t properly manage your inventory levels, let alone optimize them, if you don’t have a handle on exactly how demand forecasts and stocking parameters (such as Min/Max, safety stocks, and reorder points, and order quantities) are determined.

Many organizations cannot specify how policy inputs are calculated or identify situations calling for management overrides to the policy.   For example, many people can say they rely on a particular planning method such as Min/Max, reorder point, or forecast with safety stock, but they can’t say exactly how these planning inputs are calculated.  More fundamentally, they may not understand what would happen to their KPI’s if they were to change Min,Max, or Safety Stock. They may know that the forecast relies on “averages” or “history” or “sales input”, but specific details about how the final forecast is arrived at are unclear.

Often enough, a company’s inventory planning and forecasting logic was developed by a former employee or vanished consultant and entombed in a spreadsheet.  It otherwise may rely on outdated ERP functionality or ERP customization by an IT organization that incorrectly assumed that ERP software can and should do everything. (Read this great and, as they say, “funny because it’s true,” blog by Shaun Snapp about ERP Centric Strategies.)  The policy may not have been properly documented, and no one currently on the job can improve it or use it to best advantage.

This unhappy situation leads to another, in which buyers and inventory planners flat out ignore the output from the ERP system, forcing reliance on Microsoft Excel to determine order schedules.  Ad hoc methods are developed that impede cohesive responses to operational issues and aren’t visible to the rest of the organization (unless you want your CFO to learn the complex and finicky spreadsheet).  These methods often rely on rules of thumb, averaging techniques, or textbook statistics without a full understanding of their shortcomings or applicability.  And even when documented, most companies often discover that actual ordering strays from the documented policy.  One company we consulted for had on hand inventory levels that were routinely 2 x’s the Max quantity!  In other words, there isn’t really a policy at all.

In summary, many current inventory and demand forecast “systems” were developed out of distrust for the previous system’s suggestions but don’t actually improve KPI’s.  They also force the organization to rely on a few employees to manage demand forecasting, daily ordering, and inventory replenishment.

And when there is a problem, it is impossible for the executive team to unwind how you got there, because there are too many moving parts.  For example, was the excess stock the fault of an inaccurate demand forecast that relied on an averaging method that didn’t account for a declining demand?  Or was it due to an outdated lead time setting that was higher than it should’ve been?  Or was it due to a forecast override a planner made to account for an order that just never happened?  And who gave the feedback to make that override?  A customer? Salesperson?

Do you have any of these problems?  If so, you are wasting hundreds of thousands to millions of dollars each year in unnecessary shortage costs, holding costs, and ordering costs.  What would you be able to do with that extra cash?  Imagine the impact that this would have on your business.

This blog details the top 10 questions that you can ask in order to uncover what’s really happening at your company.  We detail the typical answers provided when a forecasting/inventory planning policy doesn’t really exist, explain how to interpret these answers, and offer some clear advice on what to do about it.

 

Leave a Comment

Related Posts

Maximize Machine Uptime with Probabilistic Modeling

Maximize Machine Uptime with Probabilistic Modeling

If you both make and sell things, you own two inventory problems. Companies that sell things must focus relentlessly on having enough product inventory to meet customer demand. Manufacturers and asset intensive industries such as power generation, public transportation, mining, and refining, have an additional inventory concern: having enough spare parts to keep their machines running.
This technical brief reviews the basics of two probabilistic models of machine breakdown. It also relates machine uptime to the adequacy of spare parts inventory.

Want to Optimize Inventory? Follow These 4 Steps

Want to Optimize Inventory? Follow These 4 Steps

Service Level Driven Planning (SLDP) is an approach to inventory planning based on exposing the tradeoffs between SKU availability and inventory cost that are at the root of all wise inventory decisions. When organizations understand these tradeoffs, they can make better decisions and have greater variability into the risk of stockouts. SLDP unfolds in four steps: Benchmark, Collaborate, Plan, and Track.

Four Ways to Optimize Inventory

Four Ways to Optimize Inventory

Inventory optimization has become an even higher priority in recent months for many of our customers.  Some are finding their products in vastly greater demand; more have the opposite problem. In either case, events like the Covid19 pandemic are forcing a reexamination of standard operating conditions, such as choices of reorder points and order quantities.

Recent Posts

  • Four Useful Ways to Measure Forecast Error XLFour Useful Ways to Measure Forecast Error
    In this video, Dr. Thomas Willemain, co-Founder and SVP Research, talks about improving Forecast Accuracy by measuring Forecast Error. We begin by overviewing the various types of Error Metrics: Scale-dependent error, Percentage error, Relative error, and Scale-free error Metrics. While some error is inevitable, there are ways to reduce it, and forecast metrics are necessary aids for monitoring and improving forecast accuracy. Then we will explain the special problem of intermittent demand and divide-by-zero problems. Tom concludes by explaining how to assess forecasts of multiple items and how it often makes sense to use weighted averages, weighting items differently by volume or revenue. […]
  • PR Electric Power Utility Software for Planning Inventory OptimizationElectric Power Utility Selects Smart Software for Inventory Optimization
    Smart Software today announced its selection, purchase, and implementation of its flagship product by a major US Electric Utility. Smart IP&O was implemented in just 90 days and has reduced inventory by $9 million within its first six months of operation. […]