The Smart Forecaster

Pursuing best practices in demand planning,

forecasting and inventory optimization

Tremendous cost-saving efficiencies can result from optimizing inventory stocking levels using the best predictions of future demand. Familiarity with forecasting basics is an important part of being effective with the software tools designed to exploit this efficiency. This concise introduction (the first in a short series of blog posts) offers the busy professional a primer in the basic ideas you need to bring to bear on forecasting. How do you evaluate your forecasting efforts, and how reliable are the results?

A good forecast is “unbiased.” It correctly captures predictable structure in the demand history, including: trend (a regular increase or decrease in demand); seasonality (cyclical variation); special events (e.g. sales promotions) that could impact demand or have a cannibalization effect on other items; and other, macroeconomic events.

By “unbiased,” we mean that the estimated forecast is not projecting too high or too low; the actual demand is equally likely to be above or below predicted demand. Think of the forecast as your best guess of what could happen in the future. If that forecast is “unbiased,” the overall picture will show that measures of actual future demand will “bracket” the forecasts—distributed in balance above and below predictions by the equal odds.

You can think of this as if you are an artillery officer and your job is to destroy a target with your cannon. You aim your cannon (“the forecast”) and then shoot and watch the shells fall. If you aimed the cannon correctly (producing an “unbiased” forecast), those shells will “bracket” the target; some shells will fall in front and some shells fall behind, but some shells will hit the target. The falling shells can be thought of as the “actual demand” that will occur in the future. If you forecasted well (aimed your cannon well), then those actuals will bracket the forecasts, falling equally above and below the forecast.

Once you have obtained an “unbiased” forecast (in other words, you aimed your cannon correctly), the question is: how accurate was your forecast? Using the artillery example, how wide is the range around the target in which your shells are falling? You want to have as narrow a range as possible. A good forecast will be one with the minimal possible “spread” around the target.

However, just because the actuals are falling widely around the forecast does not mean you have a bad forecast. It may merely indicate that you have very “volatile” demand history. Again, using the artillery example, if you are starting to shoot in a hurricane, you should expect the shells to fall around the target with a wide error.

Your goal is to obtain as accurate a forecast as is possible with the data you have. If that data is very volatile (you’re shooting in a hurricane), then you should expect a large error. If your data is stable, then you should expect a small error and your actuals will fall close to the forecast—you’re shooting on a clear day!

So that you can understand both the usefulness of your forecasts and the degree of caution appropriate when applying them, you need to be able to review and measure how well your forecast is doing. How well is it estimating what actually occurs? SmartForecasts does this automatically by running its “sliding simulation” through the history. It simulates “forecasts” that could have occurred in the past. An older part of the history, without the most recent numbers, is isolated and used to build forecasts. Because these forecasts then “predict” what might happen in the more recent past—a period for which you already have actual demand data—the forecasts can be compared to the real recent history.

In this manner, SmartForecasts can empirically compute the actual forecast error—and those errors are needed to properly estimate safety stock. Safety stock is the amount of extra stock you need to carry in order to account for the anticipated error in your forecasts. In a subsequent essay, I’ll discuss how we use our estimated forecasts error (via the SmartForecasts sliding simulation) to correctly estimate safety stocks.

Nelson Hartunian, PhD, co-founded Smart Software, formerly served as President, and currently oversees it as Chairman of the Board. He has, at various times, headed software development, sales and customer service.

Leave a Comment

Related Posts

Daily Demand Scenarios

Daily Demand Scenarios

In this Videoblog, we will explain how time series forecasting has emerged as a pivotal tool, particularly at the daily level, which Smart Software has been pioneering since its inception over forty years ago. The evolution of business practices from annual to more refined temporal increments like monthly and now daily data analysis illustrates a significant shift in operational strategies.

Learning from Inventory Models

Learning from Inventory Models

In this video blog, the spotlight is on a critical aspect of inventory management: the analysis and interpretation of inventory data. The focus is specifically on a dataset from a public transit agency detailing spare parts for buses.

The Methods of Forecasting

The Methods of Forecasting

Demand planning and statistical forecasting software play a pivotal role in effective business management by incorporating features that significantly enhance forecasting accuracy. One key aspect involves the utilization of smoothing-based or extrapolative models, enabling businesses to quickly make predictions based solely on historical data. This foundation rooted in past performance is crucial for understanding trends and patterns, especially in variables like sales or product demand. Forecasting software goes beyond mere data analysis by allowing the blending of professional judgment with statistical forecasts, recognizing that forecasting is not a one-size-fits-all process. This flexibility enables businesses to incorporate human insights and industry knowledge into the forecasting model, ensuring a more nuanced and accurate prediction.

Recent Posts

  • Overcoming Uncertainty with Service and Inventory Optimization TechnologyOvercoming Uncertainty with Service and Inventory Optimization Technology
    In this blog, we will discuss today's fast-paced and unpredictable market and the constant challenges businesses face in managing their inventory and service levels efficiently. The main subject of this discussion, rooted in the concept of "Probabilistic Inventory Optimization," focuses on how modern technology can be leveraged to achieve optimal service and inventory targets amidst uncertainty. This approach not only addresses traditional inventory management issues but also offers a strategic edge in navigating the complexities of demand fluctuations and supply chain disruptions. […]
  • Daily Demand Scenarios Smart 2Daily Demand Scenarios
    In this Videoblog, we will explain how time series forecasting has emerged as a pivotal tool, particularly at the daily level, which Smart Software has been pioneering since its inception over forty years ago. The evolution of business practices from annual to more refined temporal increments like monthly and now daily data analysis illustrates a significant shift in operational strategies. […]
  • The Cost of Doing nothing with your inventory Planning SystemsThe Cost of Spreadsheet Planning
    Companies that depend on spreadsheets for demand planning, forecasting, and inventory management are often constrained by the spreadsheet’s inherent limitations. This post examines the drawbacks of traditional inventory management approaches caused by spreadsheets and their associated costs, contrasting these with the significant benefits gained from embracing state-of-the-art planning technologies. […]
  • Learning from Inventory Models Software AILearning from Inventory Models
    In this video blog, the spotlight is on a critical aspect of inventory management: the analysis and interpretation of inventory data. The focus is specifically on a dataset from a public transit agency detailing spare parts for buses. […]
  • The methods of forecasting SoftwareThe Methods of Forecasting
    Demand planning and statistical forecasting software play a pivotal role in effective business management by incorporating features that significantly enhance forecasting accuracy. One key aspect involves the utilization of smoothing-based or extrapolative models, enabling businesses to quickly make predictions based solely on historical data. This foundation rooted in past performance is crucial for understanding trends and patterns, especially in variables like sales or product demand. Forecasting software goes beyond mere data analysis by allowing the blending of professional judgment with statistical forecasts, recognizing that forecasting is not a one-size-fits-all process. This flexibility enables businesses to incorporate human insights and industry knowledge into the forecasting model, ensuring a more nuanced and accurate prediction. […]

    Inventory Optimization for Manufacturers, Distributors, and MRO

    • Why MRO Businesses Need Add-on Service Parts Planning & Inventory SoftwareWhy MRO Businesses Need Add-on Service Parts Planning & Inventory Software
      MRO organizations exist in a wide range of industries, including public transit, electrical utilities, wastewater, hydro power, aviation, and mining. To get their work done, MRO professionals use Enterprise Asset Management (EAM) and Enterprise Resource Planning (ERP) systems. These systems are designed to do a lot of jobs. Given their features, cost, and extensive implementation requirements, there is an assumption that EAM and ERP systems can do it all. In this post, we summarize the need for add-on software that addresses specialized analytics for inventory optimization, forecasting, and service parts planning. […]
    • Spare-parts-demand-forecasting-a-different-perspective-for-planning-service-partsThe Forecast Matters, but Maybe Not the Way You Think
      True or false: The forecast doesn't matter to spare parts inventory management. At first glance, this statement seems obviously false. After all, forecasts are crucial for planning stock levels, right? It depends on what you mean by a “forecast”. If you mean an old-school single-number forecast (“demand for item CX218b will be 3 units next week and 6 units the week after”), then no. If you broaden the meaning of forecast to include a probability distribution taking account of uncertainties in both demand and supply, then yes. […]
    • Whyt MRO Businesses Should Care about Excess InventoryWhy MRO Businesses Should Care About Excess Inventory
      Do MRO companies genuinely prioritize reducing excess spare parts inventory? From an organizational standpoint, our experience suggests not necessarily. Boardroom discussions typically revolve around expanding fleets, acquiring new customers, meeting service level agreements (SLAs), modernizing infrastructure, and maximizing uptime. In industries where assets supported by spare parts cost hundreds of millions or generate significant revenue (e.g., mining or oil & gas), the value of the inventory just doesn’t raise any eyebrows, and organizations tend to overlook massive amounts of excessive inventory. […]
    • Top Differences between Inventory Planning for Finished Goods and for MRO and Spare PartsTop Differences Between Inventory Planning for Finished Goods and for MRO and Spare Parts
      In today’s competitive business landscape, companies are constantly seeking ways to improve their operational efficiency and drive increased revenue. Optimizing service parts management is an often-overlooked aspect that can have a significant financial impact. Companies can improve overall efficiency and generate significant financial returns by effectively managing spare parts inventory. This article will explore the economic implications of optimized service parts management and how investing in Inventory Optimization and Demand Planning Software can provide a competitive advantage. […]