De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

U kunt uw voorraadniveaus niet goed beheren, laat staan optimaliseren, als u niet precies weet hoe vraagprognoses en voorraadparameters (zoals min/max, veiligheidsvoorraden, bestelpunten en bestelhoeveelheden) precies zijn bepaald.

Veel organisaties kunnen niet specificeren hoe beleidsinputs worden berekend of situaties identificeren waarin het management het beleid terzijde moet schuiven. Veel mensen kunnen bijvoorbeeld zeggen dat ze vertrouwen op een bepaalde planningsmethode, zoals Min/Max, bestelpunt of prognose met veiligheidsvoorraad, maar ze kunnen niet precies zeggen hoe deze planningsinputs worden berekend. Meer fundamenteel begrijpen ze misschien niet wat er met hun KPI's zou gebeuren als ze de min-, max- of veiligheidsvoorraad zouden wijzigen. Ze weten misschien dat de prognose berust op "gemiddelden" of "geschiedenis" of "verkoopinput", maar specifieke details over hoe de uiteindelijke prognose tot stand komt, zijn onduidelijk.

Vaak genoeg werd de logica voor voorraadplanning en prognoses van een bedrijf ontwikkeld door een voormalige werknemer of verdwenen adviseur en in een spreadsheet gestopt. Het kan anders terugvallen op verouderde ERP-functionaliteit of ERP-maatwerk door een IT-organisatie die er ten onrechte van uitging dat ERP-software alles kan en moet. (Lees dit geweldig en, zoals ze zeggen, "grappig omdat het waar is", blog van Shaun Snapp over ERP-gerichte strategieën.) Het beleid is mogelijk niet goed gedocumenteerd en niemand die momenteel aan het werk is, kan het verbeteren of er het beste van maken.

Deze ongelukkige situatie leidt tot een andere, waarin inkopers en voorraadplanners ronduit de output van het ERP-systeem negeren, waardoor ze afhankelijk worden van Microsoft Excel om orderschema's te bepalen. Er worden ad-hocmethoden ontwikkeld die samenhangende reacties op operationele problemen in de weg staan en die niet zichtbaar zijn voor de rest van de organisatie (tenzij u wilt dat uw CFO de complexe en kieskeurige spreadsheet leert kennen). Deze methoden zijn vaak afhankelijk van vuistregels, middelingstechnieken of leerboekstatistieken zonder een volledig begrip van hun tekortkomingen of toepasbaarheid. En zelfs wanneer gedocumenteerd, ontdekken de meeste bedrijven vaak dat de daadwerkelijke bestelling afwijkt van het gedocumenteerde beleid. Een bedrijf waarvoor we overlegden, had voorraadniveaus bij de hand die routinematig 2 x de maximale hoeveelheid waren! Met andere woorden, er is helemaal geen beleid.

Samengevat, veel huidige voorraad- en vraagvoorspellingssystemen zijn ontwikkeld uit wantrouwen voor de suggesties van het vorige systeem, maar verbeteren de KPI's niet echt. Ze dwingen de organisatie ook om op een paar werknemers te vertrouwen om vraagprognoses, dagelijkse bestellingen en voorraadaanvulling te beheren.

En als er een probleem is, kan het uitvoerende team onmogelijk ontspannen hoe je daar bent gekomen, omdat er te veel bewegende delen zijn. Was de overtollige voorraad bijvoorbeeld de schuld van een onnauwkeurige vraagprognose die berustte op een middelingsmethode die geen rekening hield met een afnemende vraag? Of was het te wijten aan een verouderde instelling van de doorlooptijd die hoger was dan had moeten zijn? Of was het te wijten aan een prognose-override die een planner had gemaakt om rekening te houden met een bestelling die gewoon nooit is gebeurd? En wie gaf de feedback om die override te maken? Een klant? Verkoper?

Heeft u een van deze problemen? Als dat zo is, verspilt u elk jaar honderdduizenden tot miljoenen dollars aan onnodige tekortkosten, voorraadkosten en bestelkosten. Wat zou je met dat extra geld kunnen doen? Stelt u zich eens voor welke impact dit zou hebben op uw bedrijf.

Deze blog beschrijft de top 10 vragen die u kunt stellen om te ontdekken wat er echt gebeurt in uw bedrijf. We beschrijven de typische antwoorden die worden gegeven wanneer er niet echt een beleid voor prognoses/voorraadplanning bestaat, leggen uit hoe deze antwoorden moeten worden geïnterpreteerd en geven duidelijk advies over wat u eraan kunt doen.

 

Laat een reactie achter

gerelateerde berichten

Verward over AI en Machine Learning?

Verward over AI en Machine Learning?

Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

recente berichten

  • What is Inventory Control Planning Management Optimization DictionaryWhat is Inventory Planning? A Brief Dictionary of Inventory-Related Terms
    People involved in the supply chain are likely to have questions about various inventory terms and methods used in their jobs. This note may help by explaining these terms and showing how they relate. […]
  • artificial intelligence ai and machine learning inventory managementVerward over AI en Machine Learning?
    Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn. […]
  • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
    In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
  • Balans,Concept,Met,Chroom,Ballen,software voor voorraadoptimalisatieHoe u voorraadvereisten kunt voorspellen
    Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag. […]
  • Demand Planning tweelingbroers met prognosetoolsZes best practices voor vraagplanning waar u twee keer over moet nadenken
    Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]
    • professionele technicus-ingenieur die reserveonderdelen plant in industriële productiefabriek,Bereid uw reserveonderdelenplanning voor op onverwachte schokken
      In het onvoorspelbare zakenklimaat van vandaag moeten we ons zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken. […]