Service Level Driven Planning for Service Parts Businesses in the Dynamics 365 space

Service-Level-Driven Service Parts Planning for Microsoft Dynamics BC or F&SC is a four-step process that extends beyond simplified forecasting and rule-of-thumb safety stocks. It provides service parts planners with data-driven, risk-adjusted decision support.

 

The math to determine this level of planning simply does not exist in D365 functionality.  It requires math and AI that passes thousands of times through calculations for each part and part center (locations).  Math and AI like this are unique to Smart.  To understand more, please read on. 

 

Step 1. Ensure that all stakeholders agree on the metrics that matter. 

All participants in the service parts inventory planning process must agree on the definitions and what metrics matter most to the organization. Service Levels detail the percentage of time you can completely satisfy required usage without stocking out. Fill Rates detail the percentage of the requested usage that is immediately filled from stock. (To learn more about the differences between service levels and fill rate, watch this 4-minute lesson here.) Availability details the percentage of active spare parts with an on-hand inventory of at least one unit. Holding costs are the annualized costs of holding stock accounting for obsolescence, taxes, interest, warehousing, and other expenses. Shortage costs are the cost of running out of stock, including vehicle/equipment downtime, expedites, lost sales, and more. Ordering costs are the costs associated with placing and receiving replenishment orders.

 

Step 2. Benchmark historical and predicted current service level performance.

All participants in the service parts inventory planning process must hold a common understanding of predicted future service levels, fill rates, and costs and their implications for your service parts operations. It is critical to measure both historical Key Performance Indicators (KPIs) and their predictive equivalents, Key Performance Predictions (KPPs).  Leveraging modern software, you can benchmark past performance and leverage probabilistic forecasting methods to simulate future performance.  Virtually every Demand Planning solution stops here.  Smart goes further by stress-testing your current inventory stocking policies against all plausible future demand scenarios.  It is these thousands of calculations that build our KPPs.  The accuracy of this improves D365’s ability to balance the costs of holding too much with the costs of not having enough. You will know ahead of time how current and proposed stocking policies are likely to perform.

 

Step 3. Agree on targeted service levels for each spare part and take proactive corrective action when targets are predicted to miss. 

Parts planners, supply chain leadership, and the mechanical/maintenance teams should agree on the desired service level targets with a full understanding of the tradeoffs between stockout risk and inventory cost.  A call out here is that our D365 customers are almost always stunned by the stocking levels difference between 100% and 99.5% availability.   With the logic for nearly 10,000 scenarios that half a percent outage is almost never hit.   You achieve full stocking policy with much lower costs.   You find the parts that are understocked and correct those.  The balancing point is often a 7-12% reduction in inventory costs. 

This leveraging of what-if scenarios in our parts planning software gives management and buyers the ability to easily compare alternative stocking policies and identify those that best meet business objectives.  For some parts, a small stock out is okay.  For others, we need that 99.5% parts availability.  Once these limits are agreed upon, we use the Power of D365 to optimize inventory using D365 core ERP as it should be.   The planning is automatically uploaded to engage Dynamics with modified reorder points, safety stock levels, and/or Min/Max parameters.  This supports a single Enterprise center point, and people are not using multiple systems for their daily parts management and purchasing.

 

Step 4. Make it so and keep it so. 

Empower the planning team with the knowledge and tools it needs to ensure that you strike agreed-upon balance between service levels and costs.  This is critical and important.  Using Dynamics F&SC or BC to execute your ERP transactions is also important.  These two Dynamics ERPs have the highest level of new ERP growth on the planet.  Using them as they are intended to be used makes sense.   Filling the white space for the math and AI calculations for Maintenance and Parts management also makes sense.  This requires a more complex and targeted solution to help.  Smart Software Inventory Optimization for EAM and Dynamics ERPs holds the answer.    

Remember: Recalibration of your service parts inventory policy is preventive maintenance against both stockouts and excess stock.  It helps costs, frees capital for other uses, and supports best practices for your team. 

 

Extend Microsoft 365 F&SC and AX with Smart IP&O

To see a recording of the Microsoft Dynamics Communities Webinar showcasing Smart IP&O, register here:

https://smartcorp.com/inventory-planning-with-microsoft-365-fsc-and-ax/

 

 

 

 

Extend Microsoft 365 F&SC and AX with Smart IP&O

Microsoft Dynamics 365 F&SC and AX can manage replenishment by suggesting what to order and when via reorder point-based inventory policies.  A challenge that customers face is that efforts to maintain these levels are very detailed oriented and that the ERP system requires that the user manually specify these reorder points and/or forecasts.  As an alternative, many organizations end up generating inventory policies by hand using Excel spreadsheets or using other ad hoc approaches.

These methods are time-consuming and both likely result in some level of inaccuracy.  As a result, the organization will end up with excess inventory, unnecessary shortages, and a general mistrust of their software systems. In this article, we will review the inventory ordering functionality in AX / D365 F&SC, explain its limitations, and summarize how Smart Inventory Planning & Optimization can help improve a company’s cash position.   This is accomplished by reduced inventory, minimized and controlled stockouts.   Use of Smart Software delivers predictive functionality that is missing in Dynamics 365.

Microsoft Dynamics 365 F&SC and AX Replenishment Policies

In the inventory management module of AX and F&SC, users can manually enter planning parameters for every stock item. These parameters include reorder points, safety stock lead times, safety stock quantities, reorder cycles, and order modifiers such as supplier imposed minimum and maximum order quantities and order multiples. Once entered, the ERP system will reconcile incoming supply, current on hand, outgoing demand, and the user defined forecasts and stocking policies to net out the supply plan or order schedule (i.e., what to order and when).

There are 4 replenishment policy choices in F&SC and AX:  Fixed Reorder Quantity, Maximum Quantity, Lot-For-Lot and Customer Order Driven.

  • Fixed Reorder Quantity and Max are reorder point-based replenishment methods. Both suggest orders when on hand inventory hits the reorder point. With fixed ROQ, the order size is specified and will not vary until changed. With Max, order sizes will vary based on stock position at time of order with orders being placed up to the Max.
  • Lot-for Lot is a forecasted based replenishment method that pools total demand forecasted over a user defined time frame (the “lot accumulation period”) and generates an order suggestion totaling the forecasted quantity. So, if your total forecasted demand is 100 units per month and the lot accumulation period is 3 months, then your order suggestion would equal 300 units.
  • Order Driven is a make to order based replenishment method. It doesn’t utilize reorder points or forecasts. Think of it as a “sell one, buy one” logic that only places orders after demand is entered.

 

Limitations

Every one of F&SC / AX replenishment settings must be entered manually or imported through custom uploads created by customers.  There simply isn’t any way for users to natively generate any inputs (especially not optimal ones). The lack of credible functionality for unit level forecasting and inventory optimization within the ERP system is why so many AX and F&SC users are forced to rely on spreadsheets for planning and then manually set the parameters the ERP needs.  In reality, most planners end up manually set demand forecasts and reordering.

And when they can use spread sheets, they often rely on wide rule of thumb methods that results in using simplified statistical models.  Once calculated in the spread sheet these must be loaded into F&SC/AX.  They are often either loaded via cumbersome file imports or manually entered.   Because of the time and effort, it takes to build these, companies do not frequently update these numbers.

Once these are set in place, organizations tend to employ a reactive approach to changes.  The only time a buyer/planner reviews inventory policy is annually or at the time of purchases or manufacturing.   Some firms will also react after encountering problems with inventory levels being short (or too high).  Managing this in AX and F&AS requires manual interrogation to review history, calculate forecasts, assess buffer positions, and to recalibrate.

Microsoft recognizes these constraints in their core ERPs and understands the significant challenges to customers.  In response Microsoft has positioned forecasting under their AI Azure stack.  This method is outside of the core ERPs.  It is offered as a tool set for Data Scientists to use in defining custom complex statistics and calculations as a company wishes.  This is in addition to some basic simple calculations as a starting point are currently in their start up phases of development.  While this may hold long term gains, currently this method means customers start from near scratch and define what Microsoft currently called ‘experiments’ to gauge demand planning.

The bottom line is that customers face large challenges in getting the Dynamics stack itself to help solve these problems.  The result is for CFOs to have less cash available for what they need and for Sales Execs to have sales opportunities unfilled and a potential loss of sales because the firm can’t ship the goods the customer wants.

 

Get Smarter

Wouldn’t it be better to simply leverage a best of breed add-on for demand planning; and a best of breed inventory optimization solution to manage and balance costs and fulfilment levels?  Wouldn’t it be better to be able to do this on a daily or weekly basis to make your decisions closest to the need, preserving cash while meeting sales demand?

Imagine having a bidirectional integration with AX and F&AS so this all operates easily and quickly.   One where:

  • you could automatically recalibrate policies in frequent planning cycles using field proven, cutting-edge statistical models,
  • you would be able to calculate demand forecasts that account for seasonality, trend, and cyclical patterns,
  • You would automatically leverage optimization methods that prescribe the most profitable stocking policies and service levels that consider the real costs of carrying inventory and stock outages, giving you a full economic picture,
  • You could free up cash for use within the company and manage your inventory levels to improve order fulfillment at the same time as you free this cash.
  • you would have safety stocks and inventory levels that would account for demand and supply variability, business conditions, and priorities,
  • you’d be able to target specific service levels by groups of products, customers, warehouses, or any other dimension you selected,
  • you increase overall company profit and balance sheet health.

 

Extend Microsoft 365 F&SC and AX with Smart IP&O

To see a recording of the Microsoft Dynamics Communities Webinar showcasing Smart IP&O, register here:

https://smartcorp.com/inventory-planning-with-microsoft-365-fsc-and-ax/

 

 

 

 

Extend Microsoft 365 BC and NAV with Smart IP&O

Microsoft Dynamics 365 BC and NAV can manage replenishment by suggesting what to order and when via reorder point-based inventory policies. The problem is that the ERP system requires that the user manually specify these reorder points and/or forecasts. As a result, most organizations end up forecasting and generating inventory policies by hand in Excel spreadsheets or using other ad hoc approaches. Given poor inputs, automatic order suggestions will be inaccurate, and in turn the organization will end up with excess inventory, unnecessary shortages, and a general mistrust of their software systems.  In this article, we will review the inventory ordering functionality in BC & NAV, explain its limitations, and summarize how Smart Inventory Planning & Optimization can help reduce inventory, minimize stockouts and restore your organization’s trust in your ERP by providing the robust predictive functionality that is missing in Dynamics 365.

 

Microsoft Dynamics 365 BC and NAV Replenishment Policies

In the inventory management module of NAV and BC, users can manually enter planning parameters for every stock item. These parameters include reorder points, safety stock lead times, safety stock quantities, reorder cycles, and order modifiers such as supplier imposed minimum and maximum order quantities and order multiples.  Once entered, the ERP system will reconcile incoming supply, current on hand, outgoing demand, and the user defined forecasts and stocking policies to net out the supply plan or order schedule (i.e., what to order and when).

 

There are 4 replenishment policy choices in NAV & BC:  Fixed Reorder Quantity, Maximum Quantity, Lot-For-Lot and Order.

  • Fixed Reorder Quantity and Max are reorder point-based replenishment methods. Both suggest orders when on hand inventory hits the reorder point.  With fixed ROQ, the order size is specified and will not vary until changed.  With Max, order sizes will vary based on stock position at time of order with orders being placed up to the Max.
  • Lot-for Lot is a forecasted based replenishment method that pools total demand forecasted over a user defined time frame (the “lot accumulation period”) and generates an order suggestion totaling the forecasted quantity. So, if your total forecasted demand is 100 units per month and the lot accumulation period is 3 months, then your order suggestion would equal 300 units.
  • Order is a make to order based replenishment method. It doesn’t utilize reorder points or forecasts. Think of it as a “sell one, buy one” logic that only places orders after demand is entered.

 

Limitations

Every one of BC and NAVs replenishment settings must be entered manually or imported from external sources.  There simply isn’t any way for users to natively generate any inputs (especially not optimal ones). The lack of credible functionality for forecasting and inventory optimization within the ERP system is why so many NAV and BC users are forced to rely on spreadsheets.  Planners must manually set demand forecasts and reordering parameters.  They often rely on user defined rule of thumb methods or outdated and overly simplified statistical models.  Once calculated, they must input the information back into their system, often via cumbersome file imports or even manual entry.  Companies infrequently compute their policies because it is time consuming and error prone. We have even encountered situations where the reorder points haven’t been updated in years. Many organizations also tend to employ a reactive “set it and forget it” approach, where the only time a buyer/planner reviews inventory policy is at the time of order–after the order point is already breached.

 

If the order point is deemed too high, it requires manual interrogation to review history, calculate forecasts, assess buffer positions, and to recalibrate.  Most of the time, the sheer magnitude of orders means that buyers will just release it creating significant excess stock.  And if the reorder point is too low, well, it’s already too late. An expedite is required to avoid a stockout and if you can’t expedite, you’ll lose sales.

 

Get Smarter

Wouldn’t it be better to simply leverage a best of breed add-on for demand planning and inventory optimization that has an API based bidirectional integration? This way, you could automatically recalibrate policies every single planning cycle using field proven, cutting edge statistical models.  You would be able to calculate demand forecasts that account for seasonality, trend, and cyclical patterns.  Safety stocks would account for demand and supply variability, business conditions, and priorities.  You’d be able to target specific service levels so you have just enough stock.  You could even leverage optimization methods that prescribe the most profitable stocking policies and service levels that consider the real costs of carrying inventory. With a few mouse-clicks you could update NAV and BC’s replenishment policies on-demand. This means better order execution in NAV and BC, maximizing your existing investment in your ERP system.

 

Smart IP&O customers routinely helps customers realize 7 figure annual returns from reduced expedites, increased sales, and less excess stock, all the while gaining a competitive edge by differentiating themselves on improved customer service.

 

To see a recording of the Dynamics Communities Webinar showcasing Smart IP&O, register here:

https://smartcorp.com/inventory-planning-with-microsoft-dynamics-nav/

 

 

 

Extend Epicor Kinetic’s Forecasting & Min/Max Planning with Smart IP&O

Extend Epicor Kinetic’s Forecasting & Min/Max Planning with Smart IP&O  
Epicor Kinetic can manage replenishment by suggesting what to order and when via reorder point-based inventory policies. Users can either manually specify these reorder points or use a daily average of demand to dynamically compute the policies.  If the policies aren’t correct then the automatic order suggestions will be inaccurate, and in turn the organization will end up with excess inventory, unnecessary shortages, and a general mistrust of their software systems.  In this article, we will review the inventory ordering functionality in Epicor Kinetic, explain its limitations, and summarize how Smart Inventory Planning & Optimization (Smart IP&O) can help reduce inventory, minimize stockouts and restore your organization’s trust in your ERP by providing the robust predictive functionality that is missing from ERP systems.

Epicor Kinetic (and Epicor ERP 10) Replenishment Policies
In the item maintenance screen of Epicor Kinetic, users can enter planning parameters for every stock item. These include Min On-Hand, Max On-Hand, Safety Stock lead times, and order modifiers such as supplier imposed minimum and maximum order quantities and order multiples.  Kinetic will reconcile incoming supply, current on hand, outgoing demand, stocking policies, and demand forecasts (that must be imported) to net out the supply plan.   Epicor’s time-phased replenishment inquiry details what is up for order and when while the Buyers Workbench enables users to assemble purchase orders.

Epicor’s Min/Max/Safety logic and forecasts that are entered into the “forecast entry” screen drives replenishment.  Here is how it works:

  • The reorder point is equal to Min + Safety. This means whenever on hand inventory drops below the reorder point an order suggestion will be created. If demand forecasts are imported via Epicor’s “forecast entry” screen the reorder point will account for the forecasted demand over the lead time and is equal to Min + Safety + Lead time forecast
  • If “reorder to Max” is selected, Epicor will generate an order quantity up to the Max. If not selected, Epicor will order the “Min Order Qty” if MOQ is less than the forecasted quantity over the time fence. Otherwise, it will order the forecasted demand over the time-period specified.  In the buyer’s workbench, the buyer can modify the actual order quantity if desired.

 

Limitations
Epicor’s Min/Max/Safety relies on an average of daily demand. It is easy to set up and understand.  It can also be effective when you don’t have lots of demand history. However, you’ll have to create forecasts and adjust for seasonality, trend, and other patterns externally.  Finally, multiples of averages also ignore the important role of demand or supply variability and this can result in misallocated stock as illustrated in the graphic below: 

 

Epicor same average demand and safety stock is determined

In this example, two equally important items have the same average demand (2,000 per month) and safety stock is determined by doubling the lead time demand resulting in a reorder point of 4,000. Because the multiple ignores the role of demand variability, Item A results in a significant overstock and Item B results in significant stockouts.

As designed, Min should hold expected demand over lead time and Safety should hold a buffer. However, these fields are often used very differently across items without a uniform policy; sometimes users even enter a Min and Safety Stock even though the item is being forecasted, effectively over estimating demand! This will generate order suggestions before it is needed, resulting in overstocks.  

Spreadsheet Planning
Many companies turn to spreadsheets when they face challenges setting policies in their ERP system.  These spreadsheets often rely on user defined rule of thumb methods that often do more harm than good.  Once calculated, they must input the information back into Epicor,  via manual file imports or even manual entry.  The time consuming nature of the process leads companies to infrequently compute their inventory policies – Many months of even years go by in between mass updates leading to a “set it and forget it” reactive approach, where the only time a buyer/planner reviews inventory policy is at the time of order.  When policies are reviewed after the order point is already breached it is too late.  When the order point is deemed too high, manual interrogation is required to review history, calculate forecasts, assess buffer positions, and to recalibrate.  The sheer volume of orders means that buyers will just release orders rather than take the painstaking time to review everything leading to significant excess stock.  If the reorder point is too low, it’s already too late.  An expedite is now required driving up costs and even then you’ll still lose sales if the customer goes elsewhere.

Epicor is Smarter
Epicor has partnered with Smart Software and offers Smart IP&O as a cross platform add-on to Epicor Kinetic and Prophet 21 with API based integrations.  This enables Epicor customers to leverage built for purpose best of breed forecasting and inventory optimization applications.  With Epicor Smart IP&O you can automatically recalibrate policies every planning cycle using field proven, cutting-edge statistical and probabilistic models.  You can calculate demand forecasts that account for seasonality, trend, and cyclical patterns.  Safety stocks will account for demand and supply variability, business conditions, and priorities.  You can leverage service level driven planning so you have just enough stock or turn on optimization methods that prescribe the most profitable stocking policies and service levels that consider the real cost of carrying inventory. You can build consensus demand forecasts that blend business knowledge with statistics, better assess customer and sales forecasts, and confidently upload forecasts and stocking policies to Epicor within a few mouse-clicks.

Smart IP&O customers routinely realize 7 figure annual returns from reduced expedites, increased sales, and less excess stock, all the while gaining a competitive edge by differentiating themselves on improved customer service. To see a recorded webinar hosted by the Epicor Users Group that profiles Smart’s Demand Planning and Inventory Optimization platform, please register here: https://smartcorp.com/epicor-smart-inventory-planning-optimization/

 

 

 

 

What is the difference between Demand planning and Inventory optimization ?

The Smart Forecaster

Pursuing best practices in demand planning,

forecasting and inventory optimization

What is the difference between Demand planning and Inventory optimization ? 

The Smart Demand Planning app (SDP) provides demand forecasts. The SDP forecasting engine is also the core of the Smart Inventory Optimization app (SIO), which stress-tests various inventory policies using a number of demand scenarios to find optimal inventory policy settings.

 

 

Leave a Comment

Related Posts

Uncover data facts and improve inventory performance

Uncover data facts and improve inventory performance

The best inventory planning processes rely on statistical analysis to uncover relevant facts about the data. When you have the facts and add your business knowledge, you can make more informed stocking decisions that will generate significant returns. You’ll also set proper expectations with internal and external stakeholders, ensuring there are fewer unwelcome surprises.

What Silicon Valley Bank Can Learn from Supply Chain Planning

What Silicon Valley Bank Can Learn from Supply Chain Planning

If you had your head up lately, you may have noticed some additional madness off the basketball court: The failure of Silicon Valley Bank. Those of us in the supply chain world may have dismissed the bank failure as somebody else’s problem, but that sorry episode holds a big lesson for us, too: The importance of stress testing done right.

Do your statistical forecasts suffer from the wiggle effect?

Do your statistical forecasts suffer from the wiggle effect?

What is the wiggle effect? It’s when your statistical forecast incorrectly predicts the ups and downs observed in your demand history when there really isn’t a pattern. It’s important to make sure your forecasts don’t wiggle unless there is a real pattern. Here is a transcript from a recent customer where this issue was discussed:

Recent Posts

  • professional technician engineer planning spare parts in industrial manufacturing factory,Prepare your spare parts planning for unexpected shocks
    In today's unpredictable business climate, we do have to worry about supply chain disruptions, long lead times, rising interest rates, and volatile demand. With all these challenges, it's never been more vital for organizations to accurately forecast parts usage, stocking levels, and to optimize replenishment policies such as reorder points, safety stocks, and order quantities. In this blog, we'll explore how companies can leverage innovative solutions like inventory optimization and parts forecasting software that utilize machine learning algorithms, probabilistic forecasting, and analytics to stay ahead of the curve and protect their supply chains from unexpected shocks. […]
  • Uncover data facts and improve inventory performanceUncover data facts and improve inventory performance
    The best inventory planning processes rely on statistical analysis to uncover relevant facts about the data. When you have the facts and add your business knowledge, you can make more informed stocking decisions that will generate significant returns. You'll also set proper expectations with internal and external stakeholders, ensuring there are fewer unwelcome surprises. […]
  • Electricity problems. Repairman is working indoors with Software for spare partsElectric Utilities’ Problems with Spare Parts
    Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
  • Correlation vs Causation Relevant to your demand planning businessCorrelation vs Causation: Is This Relevant to Your Job?
    Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct. […]
  • Downtown Miami skyline panorama and with software guided lights on at duskSmart Software Customer, Arizona Public Service to Present at USMA 2023
    Smart Software CEO and APS Inventory & Logistics Manager to present USMA 2023 Session on APS supply chain transformation project and the role of inventory optimization technology in their new process. […]

    Inventory Optimization for Manufacturers, Distributors, and MRO

    • professional technician engineer planning spare parts in industrial manufacturing factory,Prepare your spare parts planning for unexpected shocks
      In today's unpredictable business climate, we do have to worry about supply chain disruptions, long lead times, rising interest rates, and volatile demand. With all these challenges, it's never been more vital for organizations to accurately forecast parts usage, stocking levels, and to optimize replenishment policies such as reorder points, safety stocks, and order quantities. In this blog, we'll explore how companies can leverage innovative solutions like inventory optimization and parts forecasting software that utilize machine learning algorithms, probabilistic forecasting, and analytics to stay ahead of the curve and protect their supply chains from unexpected shocks. […]
    • Electricity problems. Repairman is working indoors with Software for spare partsElectric Utilities’ Problems with Spare Parts
      Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
    • Worker maintenance industrial machine robotic Forecasting Spare PartsHow to Forecast Spare Parts with Low Usage
      What do you do when you are forecasting an intermittently demanded item, such as a spare part, with an average demand of less than one unit per month? Most of the time, the demand is zero, but the part is significant in a business sense; it can’t be ignored and must be forecasted to be sure you have adequate stock. […]
    • Spare Parts, Replacement Parts, Rotables, and Aftermarket PartsSpare Parts, Replacement Parts, Rotables, and Aftermarket Parts
      Those new to the parts planning game are often confused by the many variations in the names of parts. This blog points out distinctions that do or do not have operational significance for someone managing a fleet of spare parts and how those differences impact inventory planning. […]