The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

Demand planning takes time and effort. It’s worth the effort to the extent that it actually helps you make what you need when you need it.

But the job can be done well or poorly. We see many manufacturers stopping at the first level when they could easily go to the second level. And with a little more effort, they could go all the way to the third level, utilizing probabilistic modeling to convert demand planning results into an inventory optimization process.

The First Level

 

The first level is making a demand forecast using statistical methods. Figure 1 shows a first level effort: an item’s demand history (red line) and its expected 12-month forecast (green line).

 

 The first level: A forecast of expected demand over the next 12 months

 

The forecast is bare bones. It only projects expected demand ignoring that demand is volatile and will inevitably create forecast error. (This is another example of an important maxim: “The Average is Not the Answer”). The forecast is as likely to be too high as it is to be too low, and there is no indication of forecast uncertainty accompanying the forecast. This means the planner has no estimate of the risk associated with committing to the forecast. Still, this forecast does provide a rational basis for production planning, personal scheduling, and raw materials purchase. So, it’s much better than guessing.

The Second Level

 

The second level takes explicit account of forecast uncertainty. Figure 2 shows a second level effort, known as a “percentile forecast”.

Now we see an explicit indication of forecast uncertainty. The cyan line above the green forecast line represents the projected 90th percentile of monthly demand. That is, the demand in each future month has a 90% chance of falling at or below the cyan line. Put another way, there is a 10% chance of demand exceeding the cyan line in each month.

This analysis is much more useful because it supports risk management. If it is important to assure sufficient supply of this item, then it makes sense to produce to the 90th percentile instead of to the expected forecast. After all, it’s a coin flip as to whether the expected forecast will result in enough production to meet monthly demand. This second level forecast is, in effect, a rough substitute for a careful inventory management process.

 

A percentile forecast, where the cyan line estimates the 90th percentiles of monthly demand.

 

Figure 2. A percentile forecast, where the cyan line estimates the 90th percentiles of monthly demand.

Going All the Way to the Third Level

 

Best practice is the Third Level, which uses demand planning as a foundation for completing a second task: explicit inventory optimization. Figure 3 shows the fundamental plot for the efficient management of our finished good, assuming it has a 1 month production lead time.

 

Distribution of demand for finished good over its 1-month lead time

 

Figure 3 shows the utilization of probabilistic forecasting and how much draw-down in finished good inventory might take place over a one month production lead time. The uncertainty in demand is apparent in the spread of the possible demand, from a low of 0 to a high of 35, with 15 units being the most likely value. The vertical red line at 22 indicates the “reorder point“ (or “min” or “trigger value”) corresponding to keeping the chance of stocking out while waiting for replenishment to a low 5%. When inventory drops to 22 or below, it is time to order more. The Third Level uses probabilistic demand forecasting with full exposure of forecast uncertainty to efficiently manage the stock of the finished product.

To Sum Up

 

Forecasting the most likely demand for an item is a useful first step. It gets you halfway to where you want to be. But it provides an incomplete guide to planning because it ignores demand volatility and the forecast uncertainty that it creates. Adding a cushion to the demand forecast gets you further along, because it lessen the risk that a jump in demand will leave you short of product. This cushion can be calculated by probabilistic forecasting approaches that forecasts a high percentile of the distribution of future demand. And if you want to take one step further, you can feed forecasts of the demand distribution over a lead time to calculate reorder points (mins) to ensure that you have an acceptably low level of stock-out risk.

Given what modern forecasting technology can do for you, why would you want to stop halfway to your goal?

Leave a Comment

Related Posts

Make AI-Driven Inventory Optimization an Ally for Your Organization

Make AI-Driven Inventory Optimization an Ally for Your Organization

In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks.

Daily Demand Scenarios

Daily Demand Scenarios

In this Videoblog, we will explain how time series forecasting has emerged as a pivotal tool, particularly at the daily level, which Smart Software has been pioneering since its inception over forty years ago. The evolution of business practices from annual to more refined temporal increments like monthly and now daily data analysis illustrates a significant shift in operational strategies.

Constructive Play with Digital Twins

Constructive Play with Digital Twins

Those of you who track hot topics will be familiar with the term “digital twin.” Those who have been too busy with work may want to read on and catch up. While there are several definitions of digital twin, here’s one that works well: A digital twin is a dynamic virtual copy of a physical asset, process, system, or environment that looks like and behaves identically to its real-world counterpart. A digital twin ingests data and replicates processes so you can predict possible performance outcomes and issues that the real-world product might undergo.

Recent Posts

  • Managing Spare Parts Inventory: Best PracticesManaging Spare Parts Inventory: Best Practices
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 Ways to Improve Supply Chain Decision Speed
    The promise of a digital supply chain has transformed how businesses operate. At its core, it can make rapid, data-driven decisions while ensuring quality and efficiency throughout operations. However, it's not just about having access to more data. Organizations need the right tools and platforms to turn that data into actionable insights. This is where decision-making becomes critical, especially in a landscape where new digital supply chain solutions and AI-driven platforms can support you in streamlining many processes within the decision matrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Causes of Overstocking and Practical Solutions
    Managing inventory effectively is critical for maintaining a healthy balance sheet and ensuring that resources are optimally allocated. Here is an in-depth exploration of the main causes of overstocking, their implications, and possible solutions. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Mastering Smart IP&O for Better Inventory Management.
    Effective supply chain and inventory management are essential for achieving operational efficiency and customer satisfaction. This blog provides clear and concise answers to some basic and other common questions from our Smart IP&O customers, offering practical insights to overcome typical challenges and enhance your inventory management practices. Focusing on these key areas, we help you transform complex inventory issues into strategic, manageable actions that reduce costs and improve overall performance with Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 Key Demand Planning Trends Shaping the Future
    Demand planning goes beyond simply forecasting product needs; it's about ensuring your business meets customer demands with precision, efficiency, and cost-effectiveness. Latest demand planning technology addresses key challenges like forecast accuracy, inventory management, and market responsiveness. In this blog, we will introduce critical demand planning trends, including data-driven insights, probabilistic forecasting, consensus planning, predictive analytics, scenario modeling, real-time visibility, and multilevel forecasting. These trends will help you stay ahead of the curve, optimize your supply chain, reduce costs, and enhance customer satisfaction, positioning your business for long-term success. […]

    Inventory Optimization for Manufacturers, Distributors, and MRO

    • Managing Spare Parts Inventory: Best PracticesManaging Spare Parts Inventory: Best Practices
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovating the OEM Aftermarket with AI-Driven Inventory Optimization
      The aftermarket sector provides OEMs with a decisive advantage by offering a steady revenue stream and fostering customer loyalty through the reliable and timely delivery of service parts. However, managing inventory and forecasting demand in the aftermarket is fraught with challenges, including unpredictable demand patterns, vast product ranges, and the necessity for quick turnarounds. Traditional methods often fall short due to the complexity and variability of demand in the aftermarket. The latest technologies can analyze large datasets to predict future demand more accurately and optimize inventory levels, leading to better service and lower costs. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
      Utilities in the electrical, natural gas, urban water, and telecommunications fields are all asset-intensive and reliant on physical infrastructure that must be properly maintained, updated, and upgraded over time. Maximizing asset uptime and the reliability of physical infrastructure demands effective inventory management, spare parts forecasting, and supplier management. A utility that executes these processes effectively will outperform its peers, provide better returns for its investors and higher service levels for its customers, while reducing its environmental impact. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentering Act: Spare Parts Timing, Pricing, and Reliability
      In this article, we'll walk you through the process of crafting a spare parts inventory plan that prioritizes availability metrics such as service levels and fill rates while ensuring cost efficiency. We'll focus on an approach to inventory planning called Service Level-Driven Inventory Optimization. Next, we'll discuss how to determine what parts you should include in your inventory and those that might not be necessary. Lastly, we'll explore ways to enhance your service-level-driven inventory plan consistently. […]