De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Vraagplanning kost tijd en moeite. Het is de moeite waard voor zover het je daadwerkelijk helpt te maken wat je nodig hebt wanneer je het nodig hebt.

Maar het werk kan goed of slecht worden gedaan. We zien veel fabrikanten stoppen bij het eerste niveau terwijl ze gemakkelijk naar het tweede niveau kunnen gaan. En met een beetje meer moeite zouden ze helemaal naar het derde niveau kunnen gaan, door gebruik te maken van probabilistische modellering om de resultaten van de vraagplanning om te zetten in een voorraadoptimalisatieproces.

Het eerste niveau

 

Het eerste niveau is het maken van een vraagprognose met behulp van statistische methoden. Afbeelding 1 toont een poging op het eerste niveau: de vraaggeschiedenis van een artikel (rode lijn) en de verwachte prognose voor 12 maanden (groene lijn).

 

 Het eerste niveau: een prognose van de verwachte vraag in de komende 12 maanden

 

De voorspelling is kaal. Het projecteert alleen verwacht vraag negeren dat de vraag volatiel is en onvermijdelijk prognosefouten zal veroorzaken. (Dit is nog een voorbeeld van een belangrijke stelregel: “Het gemiddelde is niet het antwoord”). De voorspelling is waarschijnlijk zowel te hoog als te laag, en er is geen indicatie van voorspellingsonzekerheid bij de voorspelling. Dit betekent dat de planner geen inschatting heeft van het risico dat gepaard gaat met het nakomen van de prognose. Toch biedt deze prognose een rationele basis voor productieplanning, persoonlijke planning en inkoop van grondstoffen. Het is dus veel beter dan gissen.

Het tweede niveau

 

Het tweede niveau houdt expliciet rekening met de voorspelde onzekerheid. Figuur 2 toont een inspanning van het tweede niveau, bekend als een "percentielprognose".

Nu zien we een expliciete indicatie van voorspelde onzekerheid. De cyaankleurige lijn boven de groene prognoselijn vertegenwoordigt het verwachte 90e percentiel van de maandelijkse vraag. Dat wil zeggen, de vraag in elke toekomstige maand heeft een kans van 90% om op of onder de cyaanlijn te vallen. Anders gezegd, er is een kans van 10% dat de vraag elke maand de cyaanlijn overschrijdt.

Deze analyse is veel nuttiger omdat het risicobeheer ondersteunt. Als het belangrijk is om voldoende aanvoer van dit artikel te verzekeren, dan is het logisch om te produceren tot het 90e percentiel in plaats van tot de verwachte prognose. Het is tenslotte een gok of de verwachte voorspelling zal resulteren in voldoende productie om aan de maandelijkse vraag te voldoen. Deze prognose op het tweede niveau is in feite een ruwe vervanging van een zorgvuldig voorraadbeheerproces.

 

Een percentielprognose, waarbij de cyaankleurige lijn het 90e percentiel van de maandelijkse vraag schat.

 

Afbeelding 2. Een percentielprognose, waarbij de cyaankleurige lijn het 90e percentiel van de maandelijkse vraag schat.

Gaat helemaal naar het derde niveau

 

Best practice is het derde niveau, dat vraagplanning gebruikt als basis voor het voltooien van een tweede taak: expliciete voorraadoptimalisatie. Figuur 3 toont de fundamentele plot voor het efficiënte beheer van ons eindproduct, ervan uitgaande dat het een productietijd van 1 maand heeft.

 

Verdeling van de vraag naar gereed product over de doorlooptijd van 1 maand

 

Afbeelding 3 toont het gebruik van probabilistische prognoses en hoeveel afname van de voorraad gereed product kan plaatsvinden gedurende een productietijd van een maand. De onzekerheid in de vraag komt tot uiting in de spreiding van de mogelijke vraag, van een dieptepunt van 0 tot een maximum van 35, waarbij 15 eenheden de meest waarschijnlijke waarde is. De verticale rode lijn bij 22 geeft het "bestelpunt" (of "min" of "triggerwaarde") aan dat overeenkomt met het behouden van de kans op voorraad in afwachting van aanvulling tot een lage 5%. Wanneer de voorraad daalt tot 22 of lager, is het tijd om meer te bestellen. Het derde niveau maakt gebruik van probabilistische vraagprognoses met volledige blootstelling aan prognoseonzekerheid om de voorraad van het eindproduct efficiënt te beheren.

Opsommen

 

Het voorspellen van de meest waarschijnlijke vraag naar een artikel is een nuttige eerste stap. Het brengt je halverwege waar je wilt zijn. Maar het biedt een onvolledige gids voor planning, omdat het de volatiliteit van de vraag en de verwachte onzekerheid die het creëert, negeert. Door een buffer aan de vraagprognose toe te voegen, komt u verder, omdat het risico wordt verkleind dat een sprong in de vraag u een tekort aan product zal opleveren. Dit kussen kan worden berekend door middel van probabilistische prognosebenaderingen die een hoog percentage van de verdeling van de toekomstige vraag voorspellen. En als u nog een stap verder wilt gaan, kunt u prognoses van de vraagverdeling over een doorlooptijd invoeren om bestelpunten (minuten) te berekenen om ervoor te zorgen dat u een acceptabel laag risico op voorraaduitval heeft.

Gezien wat moderne prognosetechnologie voor u kan doen, waarom zou u halverwege uw doel willen stoppen?

Laat een reactie achter

gerelateerde berichten

Dagelijkse vraagscenario's

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Constructief spelen met Digital Twins

Constructief spelen met Digital Twins

Degenen onder u die actuele onderwerpen volgen, zullen bekend zijn met de term ‘digitale tweeling’. Degenen die het te druk hebben gehad met hun werk, willen misschien verder lezen en bijpraten. Hoewel er verschillende definities van een digitale tweeling bestaan, is er één die goed werkt: een digitale tweeling is een dynamische virtuele kopie van een fysiek bezit, proces, systeem of omgeving die er hetzelfde uitziet en zich hetzelfde gedraagt als zijn tegenhanger in de echte wereld. Een digitale tweeling neemt gegevens op en repliceert processen, zodat u mogelijke prestatieresultaten en problemen kunt voorspellen die het echte product kan ondergaan.

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

recente berichten

  • Simple Inventory Optimization is Good Except When It Isn’t FHDEenvoudig is goed, behalve als dat niet het geval is
    In this blog, we are steering the conversation towards the transformative potential of technology in inventory management. The discussion centers around the limitations of simple thinking in managing inventory control processes and the necessity of adopting systematic software solutions. […]
  • Gebruikmaken van Epicor Kinetic Planning BOM's met slimme IP&O om nauwkeurig HD te voorspellenGebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses
    In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt. […]
  • Twee multi-echelon inventarisoptimalisatie Neuraal netwerk AIDe volgende grens in Supply Chain Analytics
    Wij geloven dat de ontwikkeling van digitale tweelingen van voorraadsystemen de leidende factor op het gebied van supply chain-analyse is. Deze tweelingen nemen de vorm aan van discrete gebeurtenismodellen die Monte Carlo-simulatie gebruiken om het volledige scala aan operationele risico's te genereren en te optimaliseren. We beweren ook dat wij en onze collega's bij Smart Software een grote rol hebben gespeeld bij het smeden van die voorsprong. […]
  • SMART sluit zich aan bij EPICOREpicor verwerft slimme software voor AI-aangedreven technologieën voor voorraadplanning en -optimalisatie
    De overname brengt twee bedrijven samen die nauw op elkaar zijn afgestemd om organisaties te helpen op het juiste moment tot de juiste inzichten te komen en actie te ondernemen om de bedrijfsprestaties te maximaliseren. . […]
  • Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatieOnzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie
    In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van 'probabilistische voorraadoptimalisatie', richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
      MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
    • Vraag naar reserveonderdelen voorspellen-een-ander-perspectief-voor-planning-service-onderdelenDe voorspelling is belangrijk, maar misschien niet zoals u denkt
      Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja. […]
    • Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraadWaarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad
      Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien. […]
    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]