El Blog de Smart

Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Se pueden obtener enormes eficiencias de ahorro de costos al optimizar los niveles de existencias de inventario utilizando las mejores predicciones de la demanda futura. La familiaridad con los conceptos básicos de pronóstico es una parte importante para ser efectivo con las herramientas de software diseñadas para explotar esta eficiencia. Esta introducción concisa (la primera de una breve serie de publicaciones de blog) ofrece al profesional ocupado una introducción a las ideas básicas que debe aplicar en la elaboración de pronósticos. ¿Cómo evalúa sus esfuerzos de pronóstico y qué tan confiables son los resultados?

Un buen pronóstico es "imparcial". Captura correctamente la estructura predecible en el historial de demanda, que incluye: tendencia (un aumento o disminución regular de la demanda); estacionalidad (variación cíclica); eventos especiales (por ejemplo, promociones de ventas) que podrían afectar la demanda o tener un efecto de canibalización en otros artículos; y otros eventos macroeconómicos.

Por “imparcial” queremos decir que el pronóstico estimado no se proyecta demasiado alto o demasiado bajo; es igualmente probable que la demanda real esté por encima o por debajo de la demanda prevista. Piense en el pronóstico como su mejor estimación de lo que podría suceder en el futuro. Si ese pronóstico es "imparcial", el panorama general mostrará que las medidas de la demanda futura real "encuadrarán" los pronósticos, distribuidos en equilibrio por encima y por debajo de las predicciones por las mismas probabilidades.

Puedes pensar en esto como si fueras un oficial de artillería y tu trabajo es destruir un objetivo con tu cañón. Apuntas tu cañón ("el pronóstico") y luego disparas y miras caer los proyectiles. Si apuntó el cañón correctamente (produciendo un pronóstico "imparcial"), esos proyectiles "encerrarán" el objetivo; algunos proyectiles caerán al frente y algunos proyectiles caerán detrás, pero algunos proyectiles darán en el blanco. Las conchas que caen pueden considerarse como la "demanda real" que ocurrirá en el futuro. Si pronosticó bien (apuntó bien su cañón), entonces esos datos reales colocarán entre paréntesis los pronósticos, cayendo igualmente por encima y por debajo del pronóstico.

Una vez que haya obtenido un pronóstico "imparcial" (en otras palabras, apuntó su cañón correctamente), la pregunta es: ¿qué tan preciso fue su pronóstico? Usando el ejemplo de la artillería, ¿qué tan amplio es el rango alrededor del objetivo en el que caen sus proyectiles? Desea tener un rango lo más estrecho posible. Un buen pronóstico será uno con la mínima “difusión” posible alrededor del objetivo.

Sin embargo, el hecho de que los valores reales estén cayendo ampliamente alrededor del pronóstico no significa que tenga un mal pronóstico. Simplemente puede indicar que tiene un historial de demanda muy "volátil". Nuevamente, usando el ejemplo de la artillería, si está comenzando a disparar en un huracán, debe esperar que los proyectiles caigan alrededor del objetivo con un amplio error.

Su objetivo es obtener un pronóstico lo más preciso posible con los datos que tiene. Si esos datos son muy volátiles (estás disparando en un huracán), entonces deberías esperar un gran error. Si sus datos son estables, debe esperar un pequeño error y sus valores reales se acercarán al pronóstico: ¡está disparando en un día despejado!

Para que pueda comprender tanto la utilidad de sus pronósticos como el grado de precaución apropiado al aplicarlos, debe poder revisar y medir qué tan bien está funcionando su pronóstico. ¿Qué tan bien está estimando lo que realmente ocurre? SmartForecasts hace esto automáticamente ejecutando su "simulación deslizante" a través del historial. Simula “pronósticos” que podrían haber ocurrido en el pasado. Una parte más antigua del historial, sin los números más recientes, se aísla y se utiliza para generar pronósticos. Debido a que estos pronósticos luego "predicen" lo que podría suceder en el pasado más reciente, un período para el cual ya tiene datos de demanda reales, los pronósticos se pueden comparar con el historial real reciente.

De esta manera, SmartForecasts puede calcular empíricamente el error de pronóstico real, y esos errores son necesarios para estimar adecuadamente el inventario de seguridad. El inventario de seguridad es la cantidad de inventario adicional que debe tener para compensar el error anticipado en sus pronósticos. En un ensayo posterior, discutiré cómo usamos nuestro error de pronóstico estimado (a través de la simulación deslizante de SmartForecasts) para estimar correctamente las existencias de seguridad.

Nelson Hartunian, PhD, cofundó Smart Software, anteriormente se desempeñó como presidente y actualmente lo supervisa como presidente de la junta. Ha dirigido, en varias ocasiones, el desarrollo de software, las ventas y el servicio al cliente.

Deja un comentario

Artículos Relacionados

Qué hacer cuando un pronóstico estadístico no tiene sentido

Qué hacer cuando un pronóstico estadístico no tiene sentido

A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico.

Mensajes recientes

  • Quince preguntas que revelan cómo se calculan los pronósticos en su empresaQuince preguntas que revelan cómo se calculan los pronósticos en su empresa
    En una publicación reciente de LinkedIn, detallé cuatro preguntas que, una vez respondidas, revelarán cómo se utilizan los pronósticos en su negocio. En este artículo, hemos enumerado preguntas que puede hacer que revelarán cómo se crean los pronósticos. […]
  • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
    A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
  • Grupo de negocios de estilo en trajes de negocios clásicos con binoculares y telescopios reproducen diferentes métodos de pronósticoCómo interpretar y manipular los resultados del pronóstico con diferentes métodos de pronóstico
    Este blog explica cómo funciona cada modelo de pronóstico utilizando gráficos de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro. […]
  • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
  • Qué hacer cuando un pronóstico estadístico no tiene sentidoQué hacer cuando un pronóstico estadístico no tiene sentido
    A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
      A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
    • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Trabajador en un almacén de piezas de repuesto para automóviles que utiliza un software de planificación de inventarioPlanificación basada en el nivel de servicio para empresas de repuestos
      La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo. […]