De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Door de voorraadniveaus te optimaliseren met behulp van de beste voorspellingen van de toekomstige vraag, kunnen enorme kostenbesparende efficiënties worden bereikt. Bekendheid met de basisprincipes van prognoses is een belangrijk onderdeel van effectief zijn met de softwaretools die zijn ontworpen om deze efficiëntie te benutten. Deze beknopte introductie (de eerste in een korte reeks blogposts) biedt de drukbezette professional een inleiding in de basisideeën die u nodig heeft bij het maken van prognoses. Hoe evalueert u uw prognose-inspanningen en hoe betrouwbaar zijn de resultaten?

Een goede voorspelling is 'onbevooroordeeld'. Het legt de voorspelbare structuur correct vast in de vraaggeschiedenis, waaronder: trend (een regelmatige toename of afname van de vraag); seizoensgebondenheid (cyclische variatie); speciale evenementen (bijv. verkoopacties) die van invloed kunnen zijn op de vraag of een kannibaliserend effect kunnen hebben op andere artikelen; en andere, macro-economische gebeurtenissen.

Met "onbevooroordeeld" bedoelen we dat de geschatte voorspelling niet te hoog of te laag is; het is even waarschijnlijk dat de werkelijke vraag boven of onder de voorspelde vraag ligt. Beschouw de voorspelling als uw beste schatting van wat er in de toekomst zou kunnen gebeuren. Als die voorspelling "onbevooroordeeld" is, zal het algemene beeld laten zien dat metingen van de werkelijke toekomstige vraag de prognoses zullen "brullen" - in evenwicht verdeeld boven en onder voorspellingen door de gelijke kansen.

Je kunt dit zien alsof je een artillerieofficier bent en het jouw taak is om met je kanon een doelwit te vernietigen. Je richt je kanon ("de voorspelling") en schiet dan en ziet hoe de granaten vallen. Als je het kanon correct hebt gericht (een "onbevooroordeelde" voorspelling produceert), zullen die granaten het doelwit "steunen"; sommige granaten vallen vooraan en sommige granaten vallen achterop, maar sommige granaten raken het doelwit. De vallende granaten kunnen worden gezien als de "daadwerkelijke vraag" die in de toekomst zal ontstaan. Als je goed hebt voorspeld (je kanon goed hebt gericht), dan zullen die actuals de prognoses ondersteunen en zowel boven als onder de prognose vallen.

Als je eenmaal een “onbevooroordeelde” voorspelling hebt verkregen (met andere woorden, je hebt je kanon correct gericht), is de vraag: hoe nauwkeurig was je voorspelling? Als we het voorbeeld van de artillerie gebruiken, hoe groot is het bereik rond het doelwit waarin uw granaten vallen? U wilt een zo klein mogelijk bereik hebben. Een goede voorspelling is er een met de minimaal mogelijke "spreiding" rond het doel.

Echter, alleen omdat de werkelijke waarden sterk rond de voorspelling vallen, wil nog niet zeggen dat u een slechte voorspelling hebt. Het kan alleen maar aangeven dat u een zeer "volatiele" vraaggeschiedenis heeft. Nogmaals, als je het artillerievoorbeeld gebruikt, als je begint te schieten in een orkaan, zou je moeten verwachten dat de granaten met een grote fout rond het doelwit vallen.

Uw doel is om een zo nauwkeurig mogelijke voorspelling te verkrijgen met de gegevens waarover u beschikt. Als die gegevens erg vluchtig zijn (je fotografeert in een orkaan), dan zou je een grote fout moeten verwachten. Als uw gegevens stabiel zijn, kunt u een kleine fout verwachten en zullen uw werkelijke waarden dicht bij de voorspelling liggen: u fotografeert op een heldere dag!

Om zowel het nut van uw prognoses als de mate van voorzichtigheid bij het toepassen ervan te begrijpen, moet u kunnen beoordelen en meten hoe goed uw prognose presteert. Hoe goed schat het in wat er werkelijk gebeurt? SmartForecasts doet dit automatisch door zijn "glijdende simulatie" door de geschiedenis te laten lopen. Het simuleert "voorspellingen" die zich in het verleden hadden kunnen voordoen. Een ouder deel van de geschiedenis, zonder de meest recente cijfers, wordt geïsoleerd en gebruikt om prognoses op te bouwen. Omdat deze prognoses vervolgens 'voorspellen' wat er in het meer recente verleden zou kunnen gebeuren - een periode waarvoor u al werkelijke vraaggegevens hebt - kunnen de prognoses worden vergeleken met de echte recente geschiedenis.

Op deze manier kan SmartForecasts empirisch de werkelijke voorspellingsfout berekenen - en die fouten zijn nodig om de veiligheidsvoorraad correct in te schatten. Veiligheidsvoorraad is de hoeveelheid extra voorraad die u nodig heeft om rekening te houden met de verwachte fout in uw prognoses. In een volgend essay, zal ik bespreken hoe we onze geschatte prognosefout gebruiken (via de glijdende simulatie van SmartForecasts) om veiligheidsvoorraden correct in te schatten.

Nelson Hartunian, PhD, was medeoprichter van Smart Software, was voorheen President en houdt er momenteel toezicht op als voorzitter van de raad van bestuur. Hij heeft op verschillende momenten leiding gegeven aan softwareontwikkeling, verkoop en klantenservice.

Laat een reactie achter

gerelateerde berichten

Wat te doen als een statistische prognose geen steek houdt

Wat te doen als een statistische prognose geen steek houdt

Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten.

recente berichten

  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
  • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]