Blanket Orders

Customer as Teacher

Our customers are great teachers who have always helped us bridge the gap between textbook theory and practical application. A prime example happened over twenty years ago, when we were introduced to the phenomenon of intermittent demand, which is common among spare parts but rare among the finished goods managed by our original customers working in sales and marketing. This revelation soon led to our preeminent position as vendors of software for managing inventories of spare parts. Our latest bit of schooling concerns “blanket orders.”

Expanding the Inventory Theory Textbook

Textbook inventory theory focuses on the three most used replenishment policies: (1) Periodic review order-up-to policy, designated (T, S) in the books (2) Continuous review policy with fixed order quantity, designated (R, Q) and (3) Continuous review order-up-to policy, designated (s, S) but usually called “Min/Max.” Our customers have pointed out that their actual ordering process often includes frequent use of “blanket orders.” This blog focuses on how to adjust stocking targets when blanket orders are used.

Blanket Orders are Different

Blanket orders are contracts with suppliers for fixed replenishment quantities arriving at fixed intervals. For example, you might agree with your supplier to receive 20 units every 7 days via a blanket order rather than 60 to 90 units every 28 days under the Periodic Review policy. Blanket orders contrast even more with the Continuous Review policies, under which both order schedules and order quantities are random.

In general, it is efficient to build flexibility into the restocking process so that you order only what you need and only order when you need it. By that standard, Min/Max should make the most sense and blanket policies should make the least sense.

The Case for Blanket Policies

However, while efficiency is important, it is never the only consideration. One of our customers, let’s call them Company X, explained the appeal of blanket policies in their circumstances. Company X makes high-performance parts for motorcycles and ATV’s. They turn raw steel into cool things.

But they must deal with the steel. Steel is expensive. Steel is bulky and heavy. Steel is not something conjured overnight on a special-order basis. The inventory manager at Company X does not want to place large but random-sized orders at random times. He does not want to baby-sit a mountain of steel. His suppliers do not want to receive orders for random quantities at random times. And Company X prefers to spread out its payments. The result: Blanket orders.

The Fatal Flaw in Blanket Policies

For Company X, blanket orders are intended to even out replenishment buys and avoid unwieldy buildups of piles of steel before they are ready for use. But the logic behind continuous review inventory policies still applies. Surges in demand, otherwise welcome, will occur and can create stockouts. Likewise, pauses in demand can create excess demand. As time goes on, it becomes clear that a blanket policy has a fatal flaw: only if the blanket orders exactly match the average demand can they avoid runaway inventory in either direction, up or down. In practice, it will be impossible to exactly match average demand. Furthermore, average demand is a moving target and can drift up or down.

Hybrid Blanket Policies to the Rescue

A blanket policy does have advantages, but rigidity is its Achilles heel.  Planners will often improvise by adjusting future orders to handle changes in demand but this doesn’t scale across thousands of items.  To make the replenishment policy robust against randomness in demand, we suggest a hybrid policy that begins with blanket orders but retains flexibility to automatically (not manually) order additional supply on an as-need basis. Supplementing the blanket policy with a Min/Max backup provides for adjustments without manual intervention. This combination will capture some of the advantages of blanket orders while protecting customer service and avoiding runaway inventory.

Designing a hybrid policy requires choice of four control parameters. Two parameters are the fixed size and fixed timing of the blanket policy. Two more are the values of Min and Max. This leaves the inventory manager facing a four-dimensional optimization problem.  Advanced inventory optimization software will make it possible to evaluate choices for the values of the four parameters and to support negotiations with suppliers when crafting blanket orders.



Optimizing Inventory around Suppliers´ Minimum Order Quantities

Recently, I had an interesting conversation with an inventory manager and the VP Finance. We were discussing the benefits of being able to automatically optimize both reorder points and order quantities. The VP Finance was concerned that given their large supplier required minimum order quantities, they would not be able to benefit.  He said his suppliers held all the power, forcing him to accept massive minimum order quantities and tying his hands. While he felt bad about this, he saw a silver lining: He didn’t have to do any planning. He would accept a large inventory investment, but his customer service levels would be exceptional.  Perhaps the large inventory investment was assumed to be the cost of doing business.

I pushed back and pointed out that he was not as powerless as he felt. He still had control of the other half of the procurement process: while he couldn’t control how much to order, he could control when to order by adjusting the reorder point. In other words, there is always room for careful quantitative analysis in inventory management, even when you have one hand tied behind your back.

An Example

To put some numbers behind my argument, I created a scenario then analyzed it using our methodology to show how consequential it can be to use inventory optimization software even in constrained situations. In this scenario, item demand averages 2.2 units per day but varies significantly by day of week. Let’s say the imaginary supplier insists on a minimum order quantity of 500 units (way out of proportion to demand) and fills replenishment orders in either three days or ten days in equal proportions (quite inconsistent). To spread the blame around, let’s also suppose that the imaginary supplier’s imaginary customer uses a foolish rule that the reorder point should be 10% of the minimum order quantity. (Why this rule? Too many companies use simple/simplistic rules of thumb in lieu of proper analysis.)

So, we have a base case in which the order quantity is 500 units, and the reorder point is 50 units. In this case, the fill rate is 100%, but the average number of units on hand is a whopping 330. If the customer would simply lower the reorder point from 50 to 15, the fill rate would still be 99.5%, but the average stock on hand would drop by 11% to 295 units. Using the one hand not tied behind his back, the inventory manager could cut his inventory investment by more than 10%, which would be a noticeable win.

Incidentally, if the minimum order quantity were abolished, the customer would be free to arrive at a new and much better solution. Setting the order quantity to 45 and the reorder point to 25 would achieve a 99% fill rate at the cost of a daily on-hand level of only 35 units: nearly a 90% reduction in inventory investment: a major improvement over the status quo.


These calculations are possible using our software, which can make visible the otherwise unknown relationships between inventory system design choices (e.g., order quantity and reorder point) and key performance indicators (e.g., average units on hand and fill rate).  Armed with this ability to conduct these calculations, alternative arrangements with the supplier may now be considered. For example, what if, in exchange for paying a higher price per unit, the supplier agreed to a lower MOQ. Using the software to conduct an analysis of the key performance indicators using the “what if” costs and MOQs would reveal the cost per unit and MOQ that would be needed to develop a more profitable deal.   Once identified, all parties stand to benefit.  The supplier now generates a better margin on sales of its products, and the buyer holds considerably less inventory yielding a holding cost reduction that dwarfs the added cost per unit.  Everyone wins.