Inventory Planning Becomes More Interesting

The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

Taiichi Ohno of Toyota is credited with inventing Just-In-Time (JIT) manufacturing in the 1950s. JIT ensures that a manufacturer produces only what is needed, only when required, and only in the necessary amount. That innovation has since had major impacts, some good, some less so.

A recent New York Times article “How the World Ran out of Everything” describes some of the “less so” impacts.  For example, JIT has kept inventory costs very low improving return on assets.  This in turn is rewarded by Wall Street, so many companies have spent the last few decades reducing their inventories dramatically. Focused as they were on financials, many companies ignored the risks inherent in reducing inventories to the point that “lean” began to border on “emaciated.” Combined with increased globalization and new risks of supply interruption, stock-outs have abounded.

Some industries have gone too far, leaving them exposed to disruption. In a competition to get to the lowest cost, companies have inadvertently concentrated their risk, been interrupted by shortages of raw materials or components, and sometimes forced to halt assembly lines. Wall Street does not look kindly on production halts.

We all know that random events have added to the problem. First among them has been the Covid pandemic. As the pandemic has hindered factory operations and spread disarray in global shipping, many economies worldwide have been tormented by shortages of an immense range of goods — from computer chips to lumber to clothing.

The damage is compounded when more unexpected things go wrong. The Suez Canal Blockage is a prime example, obstructing the main trade route between Europe and Asia. Recently, cyberattacks have added another layer of disruption.

The reaction creates its own problems, just as the cyberattack on the Colonial Pipeline created gas shortages through panic buying. Suppliers start filling orders more slowly than usual. Manufacturers and distributors reverse course and increase inventories and diversify their suppliers to avoid future stockouts. Simply expanding warehouses may not deliver the solution, and the need to determine how much inventory to keep is more urgent every day.Manager In Warehouse With Inventory Management Software

So how can you execute a real-world plan for JIT inventory amidst all this risk and uncertainty? The foundation of your response is your corporate data. Uncertainty has two sources: supply and demand. You need the facts for both.

On the supply side, exploit the data you have on recent supplier lead times, which reflect the current turbulence. Don’t use average values when you can use probability distributions that reflect the full range of contingencies. Consider this comparison. Supplier A is now reliably filling orders in exactly 10 days. Supplier B also averages 10 days but does with a 78%/22% mix of 7 and 21 days. Both A and B have an average replenishment delay of 10 days, but the operational results they provide will be very different. You can only recognize this if you use probability models of inventory performance.

On the demand side, similar considerations apply. First, recognize that there may have been a major shift in the character of item demand (statisticians call this a “regime change”), so purge from your analysis any data that represent the “good old days.” Then, again, stop thinking in terms of averages. While the average demand is important, it is not a sufficient descriptor of the problem you face. Equally important is the volatility of demand. Volatility is the reason you keep inventory in the first place. If demand were completely predictable, you would have neither stockouts nor excess inventory. Just as you need to estimate the full probability distribution of replenishment lead times, you need the full distribution of demand values.

Once you understand the range of variability in both supply and demand, probabilistic forecasting will allow you to account for disruptions and unusual events. Software will convert your data on demand and lead times into huge numbers of scenarios representing how your next planning period might play out. Given those scenarios, the software can determine how best to meet your goals for such metrics as inventory costs and stockout rates. Using solutions such as Smart Inventory Optimization , you will confidently plan based on your targeted stockout risk with minimal inventory carrying cost. You may also consider letting the solution prescribe optimal service level targets by assessing the costs of additional inventory vs. stockout cost.

In inventory planning, as in science, we cannot escape the reality of uncertainty and the impact of unusual events. We must plan accordingly: using inventory optimization software helps you identify the least-cost service level. This creates a coherent, company-wide effort that combines visibility into current operations with mathematically correct assessments of future risks and conditions.

Inventory planning has become more “interesting” and requires a greater degree of risk awareness and agility. The right software can help.

 

Leave a Comment

Related Posts

Call an Audible to Proactively Counter Supply Chain Noise

Call an Audible to Proactively Counter Supply Chain Noise

You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

Recent Posts

  • Top Five Tips for New Demand Planners and ForecastersTop Five Tips for New Demand Planners and Forecasters
    Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field! […]
  • Dynamics Community Summit eventSmart Software to Present at Community Summit North America
    Smart Software Channel Sales Director and Enterprise Solution Engineer, to present three sessions at this year’s Microsoft Dynamics Community Summit North America event in Orlando, FL. . […]

    Redefine Exceptions and Fine Tune Planning to Address Uncertainty

    The Smart Forecaster

     Pursuing best practices in demand planning,

    forecasting and inventory optimization

    Inventory Planning from the Perspective of a Physicist

    In a perfect world, Just in Time (JIT) would be the appropriate solution for inventory management. If you can exactly predict what you need and where you need it and your suppliers can get what you need without delay, then you do not need to maintain much inventory locally.  But as the saying goes from famous pugilist Mike Tyson, “everyone has a plan until they get punched in the mouth.” And the latest punch in the mouth for the global supply chain was last week’s Suez Canal Blockage that held up $9.6B in trade costing an estimated $6.7M per minute[1].  Disruptions from these and similar events should be modeled and accounted for in your planning.

    The assumption that you can exactly predict the future was apparent in Isaac Newton’s laws. Since the 1920’s with the introduction of quantum physics, uncertainty became fundamental to our understanding of nature. Uncertainty is built into fundamental reality.  So too should it be built into Supply and Demand Planning processes.  Yet too often, black swan events such as the Suez Canal blockage are often thought of as anomalies and as a result, discounted when planning. It is not enough to look back in hindsight and proclaim that it should have been expected. Something needs to be done about addressing the occurrence of other such events in the future and planning stocking levels accordingly.

    We must move beyond the “thin tailed distribution” thinking where extreme outcomes are discounted and plan for “fat tails.”  So how do we execute a real-world JIT plan when it comes to planning inventory? To do this, the first step is to estimate the realistic lead time to obtain an item. However, estimation is difficult due to lead time uncertainty.  Using actual supplier lead times in your company database and external data, you can develop a distribution of possible future lead times and demands within those lead times. Probabilistic forecasting will allow you to account for disruptions and unusual events by not limiting your estimates to what has been observed solely on your own short-term demand and lead time data.  You’ll be able to generate possible outcomes with associated probabilities for each occurrence.

    Once you have an estimate of the lead time and demand distribution, you can then specify the service level you need to have for that part. Using solutions such as Smart Inventory Optimization (SIO), you will be able confidently stock based on the targeted stock-out risk with minimal inventory carrying cost. You may also consider letting the solution prescribe optimal service level targets by assessing the costs of additional inventory vs. cost of stockout.

    Finally, as I have already noted, we need to accept that we can never eliminate all uncertainty. As a physicist, I have always been intrigued by the fact that, even at the most basic levels of reality as we understand it today, there is still uncertainty. Albert Einstein believed in certainty (determinism) in physical law.  If he were an inventory manager, he might have argued for JIT because he believed physical laws should allow perfect predictability. He famously said, “God does not play with dice.”  Or could it be possible that the universe we exist in was a “black swan” event in a prior “multi-verse” that produced a particular kind of universe that allowed us to exist.

    In inventory planning, as in science, we cannot escape the reality of uncertainty and the impact of unusual events.  We must plan accordingly.

     

    [1] https://www.bbc.com/news/business-56559073#:~:text=Looking%20at%20the%20bigger%20picture,0.2%20to%200.4%20percentage%20points.

    Leave a Comment

    Related Posts

    Call an Audible to Proactively Counter Supply Chain Noise

    Call an Audible to Proactively Counter Supply Chain Noise

    You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

    Recent Posts

    • Top Five Tips for New Demand Planners and ForecastersTop Five Tips for New Demand Planners and Forecasters
      Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field! […]
    • Dynamics Community Summit eventSmart Software to Present at Community Summit North America
      Smart Software Channel Sales Director and Enterprise Solution Engineer, to present three sessions at this year’s Microsoft Dynamics Community Summit North America event in Orlando, FL. . […]

      Infrequent Updates to Inventory Planning Parameters Costs Time, Money, and Hurts Service

      The Smart Forecaster

       Pursuing best practices in demand planning,

      forecasting and inventory optimization

      Inventory planning parameters, such as safety stock levels, reorder points, Min/Max settings, lead times, order quantities, and DDMRP buffers directly impact inventory spending and ability to meet customer demand. Based on these parameter settings, your ERP system makes daily purchase order suggestions.

      Ensuring that these inputs are understood and optimized regularly will substantially reduce wasteful inventory spending and dramatically improve customer service levels.

      Given the importance of getting these planning parameters right, we spend a lot of time during our consultations asking (1) how these parameter values are calculated and (2) how often they are updated. Most often the methods for calculating the parameter values are rule of thumb. You can read about why using rule of thumb approaches is so problematic here  – Beware of Simple Rules of Thumb for Managing Inventory.

      This blog will focus on the frequency of updates. When we interview companies and ask them how often they update planning parameters, the answer we nearly always hear is “every day!” A follow up question or two most often reveals that this just isn’t true. What “every day” actually means in practice is this: Every day, the ERP system suggests dozens to hundreds of purchase orders and/or production jobs. The planner, let’s call him Peter, reviews these orders daily and decides whether to release, modify, or cancel them. If the order suggestion doesn’t “feel right”, Peter reviews the planning inputs and modifies the order if necessary. For example, Peter may feel there is already enough inventory on hand. To “fix” the issue, he will reduce the reorder point and cancel the order. Or if he feels that the order should have been placed weeks ago, Peter may expedite the order and increase the reorder point and order quantity to ensure there will be plenty of stock the next time.

      The principal flaws with this approach are that it is reactive and incomplete. Here is why:

      Reactive

      It only assesses the handful of items marked for replenishment on any given day but not others. The trigger for reviewing an item is when the ERP suggests an order, and that will only happen when the reorder point or Min is breached. If the Min is too high and breaches earlier than it should have, an unneeded order will be placed unless caught by the planner. If the Min is too low, well, it is too late to fix the error. No matter how large the order suggestion is, you still have to wait to be resupplied and since the order was suggested late, a stockout during the replenishment period is highly probable. Where is the “planning” in such a process? As one customer put it, “Our former process was, in hindsight, spent managing the outputs and not the inputs.”

       

      Incomplete

      Graphics for inventory gets excess and shortage for all locations of a bill of distributionWhat about the thousands of other items that have a Min/Max, safety Stock, Reorder Point, or other parameters that isn’t being reassessed given the updated demand and supply data. The planner isn’t reviewing any of these items which means problems aren’t being identified in advance. Compounding the problem is that when Peter does make a change he doesn’t have any tools to assess the quality of his changes. If he modifies the min/max settings he doesn’t know the specific impact this will have on inventory value, ordering costs, holding costs, stock outs, and service levels. He only knows that an increase in inventory will likely improve service and increase costs. He doesn’t know for example whether his inventory has reached a point of diminishing returns. When inventory decisions are made with only a very rough understanding of the trade offs it creates more problems downstream. You wouldn’t want your carpenter making rough estimates of their measurements yet it’s commonplace for inventory planning professionals to do so with millions of dollars in inventory spend at stake.

      How Often Do Most Companies Update Parameters?

      So how often do most companies make system-wide updates to their planning parameters such as reorder points, safety stocks, Min/Max settings, lead times, and order quantities? Typically, mass updates occur quarterly, annually, and in some cases never – the only times changes are made are when an order is triggered by ERP. Not exactly agile.

      The biggest reason given for not intervening more often is that it takes too much time. Most companies set these key parameters using very unwieldy Excel programs or ERP applications that simply aren’t designed to conduct systemic inventory planning. This is where inventory optimization software can help.

      Using inventory optimization software and probability forecasting to update key planning parameters frequently, say every week or month instead of quarterly or annually, enables you quickly respond to changes in your business. You can seize on cost saving opportunities, as when demand turns down and you can reduce reorder points and/or order quantities and possibly cancel outstanding orders. Or you can respond to problems, as when demand increases threaten your service level commitments to customers, or supplier lead times increase and require re-computation of reorder points.

      How to do it Right

      The key is establishing an agreed upon set of performance and inventory value metrics and letting the software monitor the state of play in the background and alert you to exceptional situations. This is simply one more way of saying that, once systems have been established, you want to go forward using management by exception. You can set ranges within which things can bubble along as they normally do, but once a critical parameter like “stock out risk exceeds a pre-defined level” or “inventory value or costs exceeds a pre-defined level,” the software can provide a daily alert and can also recommend a response, such as raising a reorder point. With this level of automated assistance, it becomes possible to keep your finger on the pulse of the inventory without being overwhelmed by the sheer volume of data.

      For example, you may choose an initial set of inventory parameters as the policy because you could see from the software that it meets your service level goals within your inventory budget. You may let the system prescribe service level targets for you and be comfortable with the settings because inventory value is within the budget. However, if demand gets less predictable than historically, you won’t be able to achieve the same level of service without an increase in inventory. An exception report will identify this and enable you to make an informed decision on what to do. You can decide to modify the policy or keep it the same. If you keep it the same, you now know the additional risks and change in inventory costs. This can be communicated to all stake holders so that there aren’t any surprises.

      Plan Don’t React

      Rather than being constantly in reactive mode, you can handle what really needs to be handled and still have some time to do forward thinking. For instance, you can do “what if” analyses on such issues as which supplier lead times would yield the biggest payoff if reduced, or whether service level targets should be adjusted to account for shifts in customer criticality, or similar policy issues. After all, it’s not as if you are not going to end up with a full daily agenda, it’s just a question of whether you can elevate that agenda to a more strategic level. So if you are spending all of your “planning” time managing the outputs of your ERP instead of constructively reviewing and optimizing the inputs, it is time to reassess your inventory planning process.

       

       

      Leave a Comment

      Related Posts

      Top Five Tips for New Demand Planners and Forecasters

      Top Five Tips for New Demand Planners and Forecasters

      Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field!

      Recent Posts

      • Top Five Tips for New Demand Planners and ForecastersTop Five Tips for New Demand Planners and Forecasters
        Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field! […]
      • Dynamics Community Summit eventSmart Software to Present at Community Summit North America
        Smart Software Channel Sales Director and Enterprise Solution Engineer, to present three sessions at this year’s Microsoft Dynamics Community Summit North America event in Orlando, FL. . […]