Backing into Safety Stock is the Safe Play

The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

We frequently encounter confusion about the process of setting safety stock levels. This blog hopes to clarify the issue.

Safety stock is a critical component in any system of inventory management. Indeed, some inventory software treats safety stock as the key decision variable in the quest to balance inventory cost against item availability. Unfortunately, that approach is not the best way to strike the balance.

First, realize that safety stock is part of a general equation:

Inventory Target = Average Lead Time Demand + Safety Stock.

Average Lead Time Demand is defined as the average units demanded multiplied by the average replenishment lead time. Example: If daily demand averages 2 units and the average lead time is 7 days, then the average lead time demand is 2 x 7= 14 units. Keeping 14 units on hand suffices to handle typical demand.

But we all know that demand is random, so keeping enough stock on hand to cover the average lead time demand invites stockouts. As we like to say, “The average is not the answer.” The smart answer is to add in some safety stock to accommodate any random spikes in demand. But how much?

There’s the problem. If you try to guesstimate a number for the safety stock, you are on thin ice. How do you know what the “right” number is?  You may think that you don’t have to worry about that because you have a good-enough answer now, but that answer has a sell-by date. Lead times change. So do demand patterns. So do company priorities. That means today’s good answer may become tomorrow’s blunder.

Some companies try to wing it using a crude rule of thumb approach. For instance, they may say something like “Set safety stock at an additional two weeks of average demand.” This approach is seductive: It only needs simple math, and it is clear.  But for the reasons listed in the previous paragraph, it’s foolish. Better to get a good answer than a convenient answer.

You need a principled, objective way to answer the question that takes account of the mathematics of randomness.  More than that, you need an answer that is linked to the key performance indicators (KPI’s) of the system: inventory cost and item availability.

Simple logic gives you some sense of the answer, but it doesn’t provide the number you need. You know that more safety stock increases both cost and availability, while less safety stock decreases both. But without knowing how much those metrics will change if you change the safety stock, you have no way to align the safety stock decision with management’s intent for striking the balance between cost and availability.

Rather than flying blind, you can back into the choice of safety stock by first finding the right choice for inventory target. Once you’ve done that, the safety stock pops out by a simple subtraction:

 Safety Stock = Inventory Target – Average Lead Time Demand.

Manager In Warehouse With ClipboardOften times, companies will state that they don’t carry safety stock because the safety stock field in their ERP system is blank. Nearly always, safety stock is built into the targeted inventory level they have established.  So, using the above formula to “back out” how much safety stock you are building into the plan is quite helpful.  The key is not just to know how much safety stock you are carrying but the link between your inventory target, safety stocks, and its corresponding KPI’s.

For instance, suppose you can tolerate only a 5% chance of stocking out while waiting for replenishment (inventory texts call this interval the “period of risk.”). Software can examine the demand history of each item and work out the odds of stockout based on the thousands of different demand scenarios that can occur during the lead time. Then the right answer for the inventory target is the choice that leads to no more than a 5% stockout risk. Given that target and knowing the average lead time demand, the appropriate safety stock value falls right out by subtraction. You also get to know the average holding, ordering and shortage costs.

That’s what we mean by “backing into the safety stock.” Start with company objectives, determine the appropriate inventory target, then derive the safety stock as the last step. Don’t start with a guess about safety stock and hope for the best.

Leave a Comment

Related Posts

Goldilocks Inventory Levels

Goldilocks Inventory Levels

You may remember the story of Goldilocks from your long-ago youth. Sometimes the porridge was too hot, sometimes it was too cold, but just once it was just right. Now that we are adults, we can translate that fairy tale into a professional principle for inventory planning: There can be too little or too much inventory, and there is some Goldilocks level that is “just right.” This blog is about finding that sweet spot.

Call an Audible to Proactively Counter Supply Chain Noise

Call an Audible to Proactively Counter Supply Chain Noise

You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

An Example of Simulation-Based Multiechelon Inventory Optimization

An Example of Simulation-Based Multiechelon Inventory Optimization

Managing the inventory across multiple facilities arrayed in multiple echelons can be a huge challenge for any company. The complexity arises from the interactions among the echelons, with demands at the lower levels bubbling up and any shortages at the higher levels cascading down.

Recent Posts

  • Smart Software CEO to present at Epicor Insights 2022Smart Software to Present at Epicor Insights 2022
    Smart Software CEO will present at this year's Epicor Insights event in Nashville. If you plan to attend this year, please join us at booth #9 and #705, and learn more about Epicor Smart Inventory Planning and Optimization. […]
  • Smart Software and Arizona Public Service to Present at WERC 2022
    Smart Software CEO and APS Inventory Manager to present WERC 2022 Studio Session on implementing Smart IP&O in 90 Days and achieve significant savings by optimizing reorder points and order quantities for over 250,000 spare parts. […]

    Clean, accessible and actionable data under one roof

    The Smart Forecaster

    Pursuing best practices in demand planning,

    forecasting and inventory optimization

    Is your data isolated in Excel Silos? Do you have data in many disparate systems? Smart IP&O Solution brings clean, accessible and actionable data under one roof.

    Scattering all your data across multiple spreadsheets gets in your way. Pulling all the data together in the Smart Platform on the cloud lets you automatically refresh the data every day and always see the full picture. Then you can run analytics in the Smart Inventory Optimization app to see how you’re doing in terms of multiple cost and performance metrics and how those metrics would change if you changed key drivers, such as supplier lead times.

    Leave a Comment

    Related Posts

    Goldilocks Inventory Levels

    Goldilocks Inventory Levels

    You may remember the story of Goldilocks from your long-ago youth. Sometimes the porridge was too hot, sometimes it was too cold, but just once it was just right. Now that we are adults, we can translate that fairy tale into a professional principle for inventory planning: There can be too little or too much inventory, and there is some Goldilocks level that is “just right.” This blog is about finding that sweet spot.

    Call an Audible to Proactively Counter Supply Chain Noise

    Call an Audible to Proactively Counter Supply Chain Noise

    You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

    An Example of Simulation-Based Multiechelon Inventory Optimization

    An Example of Simulation-Based Multiechelon Inventory Optimization

    Managing the inventory across multiple facilities arrayed in multiple echelons can be a huge challenge for any company. The complexity arises from the interactions among the echelons, with demands at the lower levels bubbling up and any shortages at the higher levels cascading down.

    Recent Posts

    • Smart Software CEO to present at Epicor Insights 2022Smart Software to Present at Epicor Insights 2022
      Smart Software CEO will present at this year's Epicor Insights event in Nashville. If you plan to attend this year, please join us at booth #9 and #705, and learn more about Epicor Smart Inventory Planning and Optimization. […]
    • Smart Software and Arizona Public Service to Present at WERC 2022
      Smart Software CEO and APS Inventory Manager to present WERC 2022 Studio Session on implementing Smart IP&O in 90 Days and achieve significant savings by optimizing reorder points and order quantities for over 250,000 spare parts. […]