The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

Companies launch initiatives to upgrade or improve their sales & operations planning and demand planning processes all the time. Many of these initiatives fail to deliver the results they should. Has your forecasting function fallen short of expectations? Do you struggle with “best practices” that seem incapable of producing accurate results?

For ten years, the editorial team at Foresight: The International Journal of Applied Forecasting has been telling readers about the struggles and successes of forecasting professionals and doing all we can to educate them about methods and practices that really work. We do that with articles contributed by forecasting professionals as well as respected academics and authors of highly-regarded books.

As Founding Editor of Foresight, I’d like to invite you to join us for the upcoming Foresight Practitioner Conference entitled “Worst Practices in Forecasting: Today’s Mistakes to Tomorrow’s Breakthroughs.”

This 1.5-day event will take place in Raleigh, North Carolina, October 5-6. There we will take a hard look at common practices that may be inhibiting efforts to build better forecasts. Our invited speakers will share how they and others have uncovered and eliminated bad habits and worst practices in their organizations for dramatic improvements in forecasting performance.

Some of the topics to be addressed include:

• Use and Abuse of Judgmental Overrides

• Avoiding Dangers in Sales Force Input to Forecasts

• Improper Practices in Inventory Optimization

• Pitfalls in Forecast Accuracy Measurement

• Worst Practices in S&OP and Demand Planning

• Worst Practices in Forecasting Software Implementation

Foresight is published by the non-profit International Institute of Forecasters (IIF), an unbiased, non-commercial organization, dedicated to the generation, distribution and use of knowledge on forecasting in a wide range of fields. (Smart Software’s own Tom Willemain serves on Foresight’s Advisory Board.) Foresight is just one of the resources made available by the IIF. Additional publications, a host of online resources, an annual symposium and periodic workshops and conferences are available to all IIF members. The Smart Forecaster previously interviewed IIF past-president Dr. Mohsen Hamoudia. Visit the IIF site for information about joining.

(Len Tashman is the editor of Foresight: The International Journal of Applied Forecasting. The unusual practice-related conference he describes, upcoming in October 2016, will appeal to many of readers of The Smart Forecaster. For instance, those who have received Smart Software’s training have been alerted to the possibility that overriding statistical forecasts can backfire if done cavalierly. Two sessions at the conference focus on the use of judgement in the forecasting process. — Tom Willemain)

Leave a Comment

Related Posts

What to do when a statistical forecast doesn’t make sense

What to do when a statistical forecast doesn’t make sense

Sometimes a statistical forecast just doesn’t make sense. Every forecaster has been there. They may double-check that the data was input correctly or review the model settings but are still left scratching their head over why the forecast looks very unlike the demand history. When the occasional forecast doesn’t make sense, it can erode confidence in the entire statistical forecasting process.

Recent Posts

  • Businessman and businesswoman reading and analysing spreadsheetThe top 3 reasons why your spreadsheet won’t work for optimizing reorder points on spare parts
    We often encounter Excel-based reorder point planning methods. In this post, we’ve detailed an approach that a customer used prior to proceeding with Smart. We describe how their spreadsheet worked, the statistical approaches it relied on, the steps planners went through each planning cycle, and their stated motivations for using (and really liking) this internally developed spreadsheet. […]
  • Style business group in classic business suits with binoculars and telescopes reproduce different forecasting methodsHow to interpret and manipulate forecast results with different forecast methods
    This blog explains how each forecasting model works using time plots of historical and forecast data. It outlines how to go about choosing which model to use. The examples below show the same history, in red, forecasted with each method, in dark green, compared to the Smart-chosen winning method, in light green. […]
  • Factory worker engineer working in factory using tablet computer to check maintenance boiler water pipe in factory.Why Spare Parts Tradeoff Curves are Mission-Critical for Parts Planning
    When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think. […]
  • What to do when a statistical forecast doesn’t make senseWhat to do when a statistical forecast doesn’t make sense
    Sometimes a statistical forecast just doesn’t make sense. Every forecaster has been there. They may double-check that the data was input correctly or review the model settings but are still left scratching their head over why the forecast looks very unlike the demand history. When the occasional forecast doesn’t make sense, it can erode confidence in the entire statistical forecasting process. […]
  • Portrait of factory worker woman with blue hardhat holds tablet and stand in spare parts workplace area. Concept of confident of working with spare parts planning software.Spare Parts Planning Isn’t as Hard as You Think
    When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think. […]

    Inventory Optimization for Manufacturers, Distributors, and MRO

    • Businessman and businesswoman reading and analysing spreadsheetThe top 3 reasons why your spreadsheet won’t work for optimizing reorder points on spare parts
      We often encounter Excel-based reorder point planning methods. In this post, we’ve detailed an approach that a customer used prior to proceeding with Smart. We describe how their spreadsheet worked, the statistical approaches it relied on, the steps planners went through each planning cycle, and their stated motivations for using (and really liking) this internally developed spreadsheet. […]
    • Factory worker engineer working in factory using tablet computer to check maintenance boiler water pipe in factory.Why Spare Parts Tradeoff Curves are Mission-Critical for Parts Planning
      When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think. […]
    • Portrait of factory worker woman with blue hardhat holds tablet and stand in spare parts workplace area. Concept of confident of working with spare parts planning software.Spare Parts Planning Isn’t as Hard as You Think
      When managing service parts, you don’t know what will break and when because part failures are random and sudden. As a result, demand patterns are most often extremely intermittent and lack significant trend or seasonal structure. The number of part-by-location combinations is often in the hundreds of thousands, so it’s not feasible to manually review demand for individual parts. Nevertheless, it is much more straightforward to implement a planning and forecasting system to support spare parts planning than you might think. […]
    • Worker on a automotive spare parts warehouse using inventory planning softwareService-Level-Driven Planning for Service Parts Businesses
      Service-Level-Driven Service Parts Planning is a four-step process that extends beyond simplified forecasting and rule-of-thumb safety stocks. It provides service parts planners with data-driven, risk-adjusted decision support. […]