The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

Physicists like my Smart Software co-founder, Dr. Nelson Hartunian, tell us civilians that everything is different when we drill down to the tiniest level of the world. Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management.

Consider quantum superposition. Briefly, superposition means any quantum entity can be in two states at once. Schrödinger’s cat is the most famous illustration of this idea. But how many of you readers are also in a state of superposition? Don’t you find yourself being a manager of a team yet a member of your supervisor’s team, a trouble-shooter yet also a forecasting expert or an inventory optimizer and…? And doesn’t all this make you sometimes feel, like that cat, that you are simultaneously both dead and alive? Modern software can ease some of this burden by automating the tasks of demand planning and inventory optimization. The rest is up to you.

A second quantum analog is entanglement. Briefly, entanglement is the linkage between two elements of a system. They can be light years apart, yet changing one part of an entangled system will instantaneously change the other part. This bugged Albert Einstein, who derided it as “spooky action as a distance.” In our regular world, demand planning and inventory optimization are entangled, since the process of inventory optimization sits on top of the process of demand forecasting. Modern software links the two in an efficient interface.

Finally, the quantum foam – one of my favorite ideas. As I understand it, quantum foam is a substitute for empty space: there is no empty space, rather a constant bubbling of “vacuum energy” accompanied by a flux of “virtual particles” being born out of nothing and then disappearing back into nothing. In the supply chain world, the analogs of virtual particles are customer orders. Often it seems that they pop up with no warning out of thin air, and sometimes they disappear by cancellation in an equally random and mysterious process. This kind of demand fluctuation is the basis for all the theory of inventory control. Modern software therefore begins with probability models of customer demand. Those models then have implications for such tangible quantities as safety stocks, reorder points, and order quantities.

Does it really help demand planners and inventory managers to think about these ideas from quantum physics? Well, it’s a bit of fun to see the analogies to our regular world of work. And they do remind us of more macroscopic matters: the basic concepts of the need to deal with more than one task simultaneously, the linkage between forecasting and inventory management, and randomness as the fundamental feature of the supply chain.

 

 

 

Leave a Comment

Related Posts

The Supply Chain Blame Game:  Top 3 Excuses for Inventory Shortage and Excess

The Supply Chain Blame Game: Top 3 Excuses for Inventory Shortage and Excess

The supply chain has become the blame game for almost any industrial or retail problem. Shortages on lead time variability, bad forecasts, and problems with bad data are facts of life, yet inventory-carrying organizations are often caught by surprise when any of these difficulties arise. So, again, who is to blame for the supply chain chaos? Keep reading this blog and we will try to show you how to prevent product shortages and overstocking.

Recent Posts

  • Mature bearded mechanic in uniform examining the machine and repairing it in factoryPlanning for Consumable vs. Repairable Parts
    When deciding on the right stocking parameters for spare and replacement parts, it is important to distinguish between consumable and repairable parts. These differences are often overlooked by inventory planning software and can result in incorrect estimates of what to stock. Different approaches are required when planning for consumables vs. repairables. […]
  • Four Common Mistakes when Planning Replenishment TargetsFour Common Mistakes when Planning Replenishment Targets
    How often do you recalibrate your stocking policies? Why? Learn how to avoid key mistakes when planning replenishment targets by automating the process, recalibrating parts, using targeting forecasting methods, and reviewing exceptions. […]
  • Smart Software is pleased to introduce our series of webinars, offered exclusively for Epicor Users.Extend Epicor Kinetic’s Forecasting & Min/Max Planning with Smart IP&O
    Epicor Kinetic can manage replenishment by suggesting what to order and when via reorder point-based inventory policies. The problem is that the ERP system requires that the user either manually specify these reorder points, or use a rudimentary “rule of thumb” approach based on daily averages. In this article, we will review the inventory ordering functionality in Epicor Kinetic, explain its limitations, and summarize how to reduce inventory, and minimize stockouts by providing the robust predictive functionality that is missing in Epicor. […]
  • Scenario based Forecasting vs EquationsScenario-based Forecasting vs. Equations
    Traditionally, software has served as a delivery vehicle for equations. This is fine, as far as it goes. But we at Smart Software think you would do better by trading in your equations for scenarios. Learn why Scenario-based planning helps planners better manage risk and create better outcomes. […]
  • Extend Microsoft 365 BC and NAV with Smart IP&OExtend Microsoft 365 BC and NAV with Smart IP&O
    Microsoft 365 BC and NAV can manage replenishment by suggesting what to order and when via reorder point-based inventory policies. The problem is that the ERP system requires that the user manually specify these reorder points and/or forecasts. In this article, we will review the inventory ordering functionality in Microsoft BC & NAV, explain its limitations, and summarize how to reduce inventory, and minimize stockouts by providing the robust predictive functionality that is missing in Dynamics 365. […]

    Inventory Optimization for Manufacturers, Distributors, and MRO

    • Blanket Orders Smart Software Demand and Inventory Planning HDBlanket Orders
      Our customers are great teachers who have always helped us bridge the gap between textbook theory and practical application. A prime example happened over twenty years ago, when we were introduced to the phenomenon of intermittent demand, which is common among spare parts but rare among the finished goods managed by our original customers working in sales and marketing. This revelation soon led to our preeminent position as vendors of software for managing inventories of spare parts. Our latest bit of schooling concerns “blanket orders.” […]
    • Hand placing pieces to build an arrowProbabilistic Forecasting for Intermittent Demand
      The New Forecasting Technology derives from Probabilistic Forecasting, a statistical method that accurately forecasts both average product demand per period and customer service level inventory requirements. […]
    • Engineering to Order at Kratos Space – Making Parts Availability a Strategic Advantage
      The Kratos Space group within National Security technology innovator Kratos Defense & Security Solutions, Inc., produces COTS s software and component products for space communications - Making Parts Availability a Strategic Advantage […]
    • wooden-figures-of-people-and-a-magnet-team-management-warehouse inventoryManaging the Inventory of Promoted Items
      In a previous post, I discussed one of the thornier problems demand planners sometimes face: working with product demand data characterized by what statisticians call skewness—a situation that can necessitate costly inventory investments. This sort of problematic data is found in several different scenarios. In at least one, the combination of intermittent demand and very effective sales promotions, the problem lends itself to an effective solution. […]