+1 617 489 2743
Select Page

# forecasting and inventory optimization

### Improve Forecast Accuracy, Eliminate Excess Inventory, & Maximize Service Levels

In this video, Dr. Thomas Willemain, co-Founder and SVP Research, talks about improving forecast accuracy by measuring forecast error. We begin by overviewing the various types of error metrics: scale-dependent error, percentage error, relative error, and scale-free error metrics. While some error is inevitable, there are ways to reduce it, and forecast metrics are necessary aids for monitoring and improving forecast accuracy. Then we will explain the special problem of intermittent demand and divide-by-zero problems. Tom concludes by explaining how to assess forecasts of multiple items and how it often makes sense to use weighted averages, weighting items differently by volume or revenue.

### Four general types of error metrics

##### 4 .Scale-free error

Remark: Scale-dependent metrics are expressed in the units of the forecasted variable. The other three are expresses as percentages.

### 1. Scale-dependent error metrics

• Mean Absolute Error (MAE) aka Mean Absolute Deviation (MAD)
• Median Absolute Error (MdAE)
• Root Mean Square Error (RMSE)
• These metrics express the error in the original units of the data.
• Ex: units, cases, barrels, kilograms, dollars, liters, etc.
• Since forecasts can be too high or too low, the signs of the errors will be either positive or negative, allowing for unwanted cancellations.
• Ex: You don’t want errors of +50 and -50 to cancel and show “no error”.
• To deal with the cancellation problem, these metrics take away negative signs by either squaring or using absolute value.

### 2. Percentage error metric

• Mean Absolute Percentage Error (MAPE)
• This metric expresses the size of the error as a percentage of the actual value of the forecasted variable.
• The advantage of this approach is that it immediately makes clear whether the error is a big deal or not.
• Ex: Suppose the MAE is 100 units. Is a typical error of 100 units horrible? ok? great?
• The answer depends on the size of the variable being forecasted. If the actual value is 100, then a MAE = 100 is as big as the thing being forecasted. But if the actual value is 10,000, then a MAE = 100 shows great accuracy, since the MAPE is only 1% of the actual.

### 3. Relative error metric

• Median Relative Absolute Error (MdRAE)
• Relative to what? To a benchmark forecast.
• What benchmark? Usually, the “naïve” forecast.
• What is the naïve forecast? Next forecast value = last actual value.
• Why use the naïve forecast? Because if you can’t beat that, you are in tough shape.

### 4. Scale-Free error metric

• Median Relative Scaled Error (MdRSE)
• This metric expresses the absolute forecast error as a percentage of the natural level of randomness (volatility) in the data.
• The volatility is measured by the average size of the change in the forecasted variable from one time period to the next.
• (This is the same as the error made by the naïve forecast.)
• How does this metric differ from the MdRAE above?
• They do both use the naïve forecast, but this metric uses errors in forecasting the demand history, while the MdRAE uses errors in forecasting future values.
• This matters because there are usually many more history values than there are forecasts.
• In turn, that matters because this metric would “blow up” if all the data were zero, which is less likely when using the demand history.

### The special problem of intermittent demand

• “Intermittent” demand has many zero demands mixed in with random non-zero demands.
• MAPE gets ruined when errors are divided by zero.
• MdRAE can also get ruined.
• MdSAE is less likely to get ruined.

### Recap and remarks

• Forecast metrics are necessary aids for monitoring and improving forecast accuracy.
• There are two major classes of metrics: absolute and relative.
• Absolute measures (MAE, MdAE, RMSE) are natural choices when assessing forecasts of one item.
• Relative measures (MAPE, MdRAE, MdSAE) are useful when comparing accuracy across items or between alternative forecasts of the same item or assessing accuracy relative to the natural variability of an item.
• Intermittent demand presents divide-by-zero problems which favor MdSAE over MAPE.
• When assessing forecasts of multiple items, it often makes sense to use weighted averages, weighting items differently by volume or revenue.

## 12 Causes of Overstocking and Practical Solutions

Managing inventory effectively is critical for maintaining a healthy balance sheet and ensuring that resources are optimally allocated. Here is an in-depth exploration of the main causes of overstocking, their implications, and possible solutions.

## FAQ: Mastering Smart IP&O for Better Inventory Management.

Effective supply chain and inventory management are essential for achieving operational efficiency and customer satisfaction. This blog provides clear and concise answers to some basic and other common questions from our Smart IP&O customers, offering practical insights to overcome typical challenges and enhance your inventory management practices. Focusing on these key areas, we help you transform complex inventory issues into strategic, manageable actions that reduce costs and improve overall performance with Smart IP&O.

## Innovating the OEM Aftermarket with AI-Driven Inventory Optimization

The aftermarket sector provides OEMs with a decisive advantage by offering a steady revenue stream and fostering customer loyalty through the reliable and timely delivery of service parts. However, managing inventory and forecasting demand in the aftermarket is fraught with challenges, including unpredictable demand patterns, vast product ranges, and the necessity for quick turnarounds. Traditional methods often fall short due to the complexity and variability of demand in the aftermarket. The latest technologies can analyze large datasets to predict future demand more accurately and optimize inventory levels, leading to better service and lower costs.

#### Recent Posts

• 5 Ways to Improve Supply Chain Decision Speed
The promise of a digital supply chain has transformed how businesses operate. At its core, it can make rapid, data-driven decisions while ensuring quality and efficiency throughout operations. However, it's not just about having access to more data. Organizations need the right tools and platforms to turn that data into actionable insights. This is where decision-making becomes critical, especially in a landscape where new digital supply chain solutions and AI-driven platforms can support you in streamlining many processes within the decision matrix. […]
• 12 Causes of Overstocking and Practical Solutions
Managing inventory effectively is critical for maintaining a healthy balance sheet and ensuring that resources are optimally allocated. Here is an in-depth exploration of the main causes of overstocking, their implications, and possible solutions. […]
• FAQ: Mastering Smart IP&O for Better Inventory Management.
Effective supply chain and inventory management are essential for achieving operational efficiency and customer satisfaction. This blog provides clear and concise answers to some basic and other common questions from our Smart IP&O customers, offering practical insights to overcome typical challenges and enhance your inventory management practices. Focusing on these key areas, we help you transform complex inventory issues into strategic, manageable actions that reduce costs and improve overall performance with Smart IP&O. […]
• 7 Key Demand Planning Trends Shaping the Future
Demand planning goes beyond simply forecasting product needs; it's about ensuring your business meets customer demands with precision, efficiency, and cost-effectiveness. Latest demand planning technology addresses key challenges like forecast accuracy, inventory management, and market responsiveness. In this blog, we will introduce critical demand planning trends, including data-driven insights, probabilistic forecasting, consensus planning, predictive analytics, scenario modeling, real-time visibility, and multilevel forecasting. These trends will help you stay ahead of the curve, optimize your supply chain, reduce costs, and enhance customer satisfaction, positioning your business for long-term success. […]
• Innovating the OEM Aftermarket with AI-Driven Inventory Optimization
The aftermarket sector provides OEMs with a decisive advantage by offering a steady revenue stream and fostering customer loyalty through the reliable and timely delivery of service parts. However, managing inventory and forecasting demand in the aftermarket is fraught with challenges, including unpredictable demand patterns, vast product ranges, and the necessity for quick turnarounds. Traditional methods often fall short due to the complexity and variability of demand in the aftermarket. The latest technologies can analyze large datasets to predict future demand more accurately and optimize inventory levels, leading to better service and lower costs. […]

#### Inventory Optimization for Manufacturers, Distributors, and MRO

• Innovating the OEM Aftermarket with AI-Driven Inventory Optimization
The aftermarket sector provides OEMs with a decisive advantage by offering a steady revenue stream and fostering customer loyalty through the reliable and timely delivery of service parts. However, managing inventory and forecasting demand in the aftermarket is fraught with challenges, including unpredictable demand patterns, vast product ranges, and the necessity for quick turnarounds. Traditional methods often fall short due to the complexity and variability of demand in the aftermarket. The latest technologies can analyze large datasets to predict future demand more accurately and optimize inventory levels, leading to better service and lower costs. […]
• Future-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
Utilities in the electrical, natural gas, urban water, and telecommunications fields are all asset-intensive and reliant on physical infrastructure that must be properly maintained, updated, and upgraded over time. Maximizing asset uptime and the reliability of physical infrastructure demands effective inventory management, spare parts forecasting, and supplier management. A utility that executes these processes effectively will outperform its peers, provide better returns for its investors and higher service levels for its customers, while reducing its environmental impact. […]
• Centering Act: Spare Parts Timing, Pricing, and Reliability
In this article, we'll walk you through the process of crafting a spare parts inventory plan that prioritizes availability metrics such as service levels and fill rates while ensuring cost efficiency. We'll focus on an approach to inventory planning called Service Level-Driven Inventory Optimization. Next, we'll discuss how to determine what parts you should include in your inventory and those that might not be necessary. Lastly, we'll explore ways to enhance your service-level-driven inventory plan consistently. […]
• Why MRO Businesses Need Add-on Service Parts Planning & Inventory Software
MRO organizations exist in a wide range of industries, including public transit, electrical utilities, wastewater, hydro power, aviation, and mining. To get their work done, MRO professionals use Enterprise Asset Management (EAM) and Enterprise Resource Planning (ERP) systems. These systems are designed to do a lot of jobs. Given their features, cost, and extensive implementation requirements, there is an assumption that EAM and ERP systems can do it all. In this post, we summarize the need for add-on software that addresses specialized analytics for inventory optimization, forecasting, and service parts planning. […]

English
English
Spanish
Dutch