Automatic Forecasting for Time Series Demand Projections

The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

Improve Forecast Accuracy, Eliminate Excess Inventory, & Maximize Service Levels

In this video tutorial Dr. Thomas Willemain, co–Founder and SVP Research at Smart Software, presents Automatic Forecasting for Time Series Demand Projections, a specialized algorithmic tournament to determine an appropriate time series model and estimate the parameters to compute the best forecasts methods. Automatic forecasts of large numbers of time series are frequently used in business, some have trend either up or down, and some have seasonality so they are cyclic, and each of those specific patterns requires a suitable technical approach, and an appropriate statistical forecasting method.  Tom explains how the tournament computes the best forecasts methods and works through a practical example.

AUTOMATIC FORECASTING COMPLETE-VIDEO-2
Leave a Comment

RECENT POSTS

Goldilocks Inventory Levels

Goldilocks Inventory Levels

You may remember the story of Goldilocks from your long-ago youth. Sometimes the porridge was too hot, sometimes it was too cold, but just once it was just right. Now that we are adults, we can translate that fairy tale into a professional principle for inventory planning: There can be too little or too much inventory, and there is some Goldilocks level that is “just right.” This blog is about finding that sweet spot.

Call an Audible to Proactively Counter Supply Chain Noise

Call an Audible to Proactively Counter Supply Chain Noise

You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

An Example of Simulation-Based Multiechelon Inventory Optimization

An Example of Simulation-Based Multiechelon Inventory Optimization

Managing the inventory across multiple facilities arrayed in multiple echelons can be a huge challenge for any company. The complexity arises from the interactions among the echelons, with demands at the lower levels bubbling up and any shortages at the higher levels cascading down.

Recent Posts

  • Smart Software CEO to present at Epicor Insights 2022Smart Software to Present at Epicor Insights 2022
    Smart Software CEO will present at this year's Epicor Insights event in Nashville. If you plan to attend this year, please join us at booth #9 and #705, and learn more about Epicor Smart Inventory Planning and Optimization. […]
  • Smart Software and Arizona Public Service to Present at WERC 2022
    Smart Software CEO and APS Inventory Manager to present WERC 2022 Studio Session on implementing Smart IP&O in 90 Days and achieve significant savings by optimizing reorder points and order quantities for over 250,000 spare parts. […]

    Forecast Using Leading Indicators – Regression Analysis:

    The Smart Forecaster

     Pursuing best practices in demand planning,

    forecasting and inventory optimization

    Improve Forecast Accuracy, Eliminate Excess Inventory, & Maximize Service Levels

    In this video tutorial Dr. Thomas Willemain, co–Founder and SVP Research at Smart Software, presents Regression Analysis, a specialized statistical modeling technique to identify and harness leading indicators to achieve more accurate forecasts.  Regression analysis is a statistical procedure to estimate the relationship between a response variable and one or more predictor variables. Housing starts, for example, might be a good leading indicator of vinyl siding demand.  Tom explains how and when to use regression analysis and works through a practical example.

    Forecasting Techniques for a more profitable business
    Leave a Comment

    RECENT POSTS

    Goldilocks Inventory Levels

    Goldilocks Inventory Levels

    You may remember the story of Goldilocks from your long-ago youth. Sometimes the porridge was too hot, sometimes it was too cold, but just once it was just right. Now that we are adults, we can translate that fairy tale into a professional principle for inventory planning: There can be too little or too much inventory, and there is some Goldilocks level that is “just right.” This blog is about finding that sweet spot.

    Call an Audible to Proactively Counter Supply Chain Noise

    Call an Audible to Proactively Counter Supply Chain Noise

    You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

    An Example of Simulation-Based Multiechelon Inventory Optimization

    An Example of Simulation-Based Multiechelon Inventory Optimization

    Managing the inventory across multiple facilities arrayed in multiple echelons can be a huge challenge for any company. The complexity arises from the interactions among the echelons, with demands at the lower levels bubbling up and any shortages at the higher levels cascading down.

    Recent Posts

    • Smart Software CEO to present at Epicor Insights 2022Smart Software to Present at Epicor Insights 2022
      Smart Software CEO will present at this year's Epicor Insights event in Nashville. If you plan to attend this year, please join us at booth #9 and #705, and learn more about Epicor Smart Inventory Planning and Optimization. […]
    • Smart Software and Arizona Public Service to Present at WERC 2022
      Smart Software CEO and APS Inventory Manager to present WERC 2022 Studio Session on implementing Smart IP&O in 90 Days and achieve significant savings by optimizing reorder points and order quantities for over 250,000 spare parts. […]

      Forecasting Techniques for a more profitable business

      The Smart Forecaster

       Pursuing best practices in demand planning,

      forecasting and inventory optimization

      Improve Forecast Accuracy, Eliminate Excess Inventory, & Maximize Service Levels

       

      In this Video Dr. Thomas Willemain, co–Founder and SVP Research, defines and compares the most useful Forecasting Techniques: Exponential Smoothing, Single Exponential Smoothing, Holt’s Method and Winter’s Method.  These videos explain the basic thinking under each technique as well as the math behind them, how they are used in practice and the tradeoff of each method.

      Forecasting Techniques for a more profitable business
      Leave a Comment

      RECENT POSTS

      Goldilocks Inventory Levels

      Goldilocks Inventory Levels

      You may remember the story of Goldilocks from your long-ago youth. Sometimes the porridge was too hot, sometimes it was too cold, but just once it was just right. Now that we are adults, we can translate that fairy tale into a professional principle for inventory planning: There can be too little or too much inventory, and there is some Goldilocks level that is “just right.” This blog is about finding that sweet spot.

      Call an Audible to Proactively Counter Supply Chain Noise

      Call an Audible to Proactively Counter Supply Chain Noise

      You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

      An Example of Simulation-Based Multiechelon Inventory Optimization

      An Example of Simulation-Based Multiechelon Inventory Optimization

      Managing the inventory across multiple facilities arrayed in multiple echelons can be a huge challenge for any company. The complexity arises from the interactions among the echelons, with demands at the lower levels bubbling up and any shortages at the higher levels cascading down.

      Recent Posts

      • Smart Software CEO to present at Epicor Insights 2022Smart Software to Present at Epicor Insights 2022
        Smart Software CEO will present at this year's Epicor Insights event in Nashville. If you plan to attend this year, please join us at booth #9 and #705, and learn more about Epicor Smart Inventory Planning and Optimization. […]
      • Smart Software and Arizona Public Service to Present at WERC 2022
        Smart Software CEO and APS Inventory Manager to present WERC 2022 Studio Session on implementing Smart IP&O in 90 Days and achieve significant savings by optimizing reorder points and order quantities for over 250,000 spare parts. […]

        TOP 3 COMMON INVENTORY POLICIES

        The Smart Forecaster

         Pursuing best practices in demand planning,

        forecasting and inventory optimization

        Inventory control policies and strategies for a more profitable business

        In this Video Dr. Thomas Willemain, co–Founder and SVP Research, defines and compares the three most used inventory control policies. These policies are divided into two groups, periodic review and continuous review. There is also a fourth policy called MRP logic or forecast based inventory planning which is the subject of a separate video blog that you can see here. These videos explain each policy, how they are used in practice and the pros and cons of each approach.

        Leave a Comment

        RECENT POSTS

        Goldilocks Inventory Levels

        Goldilocks Inventory Levels

        You may remember the story of Goldilocks from your long-ago youth. Sometimes the porridge was too hot, sometimes it was too cold, but just once it was just right. Now that we are adults, we can translate that fairy tale into a professional principle for inventory planning: There can be too little or too much inventory, and there is some Goldilocks level that is “just right.” This blog is about finding that sweet spot.

        Call an Audible to Proactively Counter Supply Chain Noise

        Call an Audible to Proactively Counter Supply Chain Noise

        You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

        An Example of Simulation-Based Multiechelon Inventory Optimization

        An Example of Simulation-Based Multiechelon Inventory Optimization

        Managing the inventory across multiple facilities arrayed in multiple echelons can be a huge challenge for any company. The complexity arises from the interactions among the echelons, with demands at the lower levels bubbling up and any shortages at the higher levels cascading down.

        Recent Posts

        • Smart Software CEO to present at Epicor Insights 2022Smart Software to Present at Epicor Insights 2022
          Smart Software CEO will present at this year's Epicor Insights event in Nashville. If you plan to attend this year, please join us at booth #9 and #705, and learn more about Epicor Smart Inventory Planning and Optimization. […]
        • Smart Software and Arizona Public Service to Present at WERC 2022
          Smart Software CEO and APS Inventory Manager to present WERC 2022 Studio Session on implementing Smart IP&O in 90 Days and achieve significant savings by optimizing reorder points and order quantities for over 250,000 spare parts. […]