Blog over statistische prognoses

Optimaliseer voorraadplanningsparameters, verbeter serviceniveaus en verhoog de omzet

Forecasting is een volledig ontwikkeld bedrijfsproces waar de meeste organisaties vandaag de dag nog mee worstelen. Bijna iedereen heeft waarschijnlijk de hoogste prioriteit om consistent en nauwkeurig verkoop, vraag, kosten, voorraad, enz. te kunnen voorspellen. Het onvermogen om een goede prognose te krijgen, heeft vaak een aanzienlijke impact op het bedrijf. Onnauwkeurige prognoses leiden tot overbevoorrading of opraken, wat resulteert in hoge kosten en overschotten, wat van invloed is op het bedrijfsresultaat en het succes van het bedrijf.

Een goede prognose zou u genoeg vertrouwen moeten geven om goede zakelijke beslissingen te nemen. Overweeg deze best practices voor een efficiëntere prognose:

  • Wat zijn de meest gebruikelijke prognosemethoden en waarom leveren ze onnauwkeurige resultaten op?
  • Hoe u een betere ROI en optimale processen kunt bereiken door schaalbaarheid, granulariteit en flexibiliteit
  • Hoe de prognosenauwkeurigheid te verbeteren
  • Hoe u eenvoudige tools voor machine learning en kunstmatige intelligentie kunt gebruiken om nauwkeurige en schaalbare prognoses te krijgen
Hoe u voorraadvereisten kunt voorspellen

Hoe u voorraadvereisten kunt voorspellen

Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag.

Lees meer
Zes best practices voor vraagplanning waar u twee keer over moet nadenken

Zes best practices voor vraagplanning waar u twee keer over moet nadenken

Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen.

Lees meer
De automatische prognosefunctie

De automatische prognosefunctie

Automatische prognoses zijn de populairste en meest gebruikte functie van SmartForecasts en Smart Demand Planner. Automatische prognoses maken is eenvoudig. Maar de eenvoud van Automatic Forecasting maskeert een krachtige interactie van een aantal zeer effectieve prognosemethoden. In deze blog bespreken we een deel van de theorie achter deze kernfunctie. We richten ons op automatische prognoses, deels vanwege de populariteit ervan en deels omdat veel andere prognosemethoden vergelijkbare resultaten opleveren. Kennis van automatische prognoses wordt onmiddellijk overgedragen naar eenvoudig voortschrijdend gemiddelde, lineair voortschrijdend gemiddelde, enkele exponentiële afvlakking, dubbele exponentiële afvlakking, Winters' exponentiële afvlakking en promoprognoses.

Lees meer
Een zachte inleiding tot twee geavanceerde technieken: statistische bootstrapping en Monte Carlo-simulatie

Een zachte inleiding tot twee geavanceerde technieken: statistische bootstrapping en Monte Carlo-simulatie

De geavanceerde supply chain-analyse van Smart Software maakt gebruik van meerdere geavanceerde methoden. Twee van de belangrijkste zijn "statistische bootstrapping" en "Monte Carlo-simulatie". Omdat er bij beide veel willekeurige getallen rondvliegen, raken mensen soms in de war over wat wat is en waar ze goed voor zijn. Vandaar deze notitie. Waar het op neerkomt: statistische bootstrapping genereert vraagscenario's voor prognoses. Monte Carlo-simulatie gebruikt de scenario's voor voorraadoptimalisatie.

Lees meer
6 observaties over succesvolle vraagvoorspellingsprocessen

6 observaties over succesvolle vraagvoorspellingsprocessen

Voorspellen is zowel een kunst als een wetenschap en vereist een balans tussen professioneel oordeel en objectieve statistische analyse. In deze blog zullen we onderzoeken hoe we nauwkeurige voorspellingen kunnen genereren door gebruik te maken van statistische methoden, zakelijke kennis te integreren en de geloofwaardigheid te vergroten door verfijning en grafische weergave. Leer hoe u technieken kunt afstemmen op de aard van gegevens en hoe u deze kunt integreren met andere bedrijfsprocessen, zodat u een allesomvattende planningsaanpak kunt ontwikkelen die rekening houdt met foutmarges en vooringenomenheid bij prognoses. Leer de principes en technieken voor succesvolle vraagprognoses, waardoor geïnformeerde besluitvorming en geoptimaliseerde planning mogelijk worden.

Lees meer

recente berichten

  • What is Inventory Control Planning Management Optimization DictionaryWhat is Inventory Planning? A Brief Dictionary of Inventory-Related Terms
    People involved in the supply chain are likely to have questions about various inventory terms and methods used in their jobs. This note may help by explaining these terms and showing how they relate. […]
  • artificial intelligence ai and machine learning inventory managementVerward over AI en Machine Learning?
    Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn. […]
  • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
    In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
  • Balans,Concept,Met,Chroom,Ballen,software voor voorraadoptimalisatieHoe u voorraadvereisten kunt voorspellen
    Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag. […]
  • Demand Planning tweelingbroers met prognosetoolsZes best practices voor vraagplanning waar u twee keer over moet nadenken
    Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]
    • professionele technicus-ingenieur die reserveonderdelen plant in industriële productiefabriek,Bereid uw reserveonderdelenplanning voor op onverwachte schokken
      In het onvoorspelbare zakenklimaat van vandaag moeten we ons zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken. […]

    Probleem

    Het genereren van nauwkeurige statistische forecasts is geen gemakkelijke taak. Planners moeten historische gegevens voortdurend up-to-date houden, een database met forecasting modellen bouwen en beheren, weten welke forecasting methoden ze moeten gebruiken, forecasting overrides bijhouden en rapporteren over de nauwkeurigheid van forecasts. Deze stappen worden doorgaans beheerd in een omslachtige spreadsheet die vaak foutgevoelig, traag en moeilijk te delen is met de rest van het bedrijf. Forecasts zijn meestal gebaseerd op one-size-fits-all-methoden waarvoor seizoensinvloeden en trends handmatig moeten worden toegevoegd, wat resulteert in onnauwkeurige voorspellingen.

    Oplossing

    SmartForecasts™ Cloud is een statistische forecastingsoftware die beschikbaar is op Smart's Inventory Planning and Optimization Platform, Smart IP&O. Het biedt een statistisch verantwoorde, objectieve basis voor uw verkoop- en operationele planningsproces (S&OP). SmartForecasts selecteert automatisch de meest nauwkeurige forecasting methode, stelt gebruikers in staat statistische en door de gebruiker gedefinieerde modellen te verfijnen, maakt prognoses en historische overrides mogelijk en meet automatisch forecasting errors en biases. Forecasting overrides worden bijgehouden en historische data worden automatisch bijgewerkt, waardoor de handmatige inspanning die gepaard gaat met op spreadsheets gebaseerde oplossingen wordt geëlimineerd. kunnen resultaten automatisch naar uw ERP-systeem worden verzonden. Het resultaat is een efficiëntere verkoopplanning, budgettering, productieplanning, bestelling en inventory planning.

      Download het productblad

      SmartForecasts® Cloud

      Logo voor statistische modellering en optimalisatie

      Nauwkeurige demand forecasts

      Gears-logo ERP-integraties

      Beste forecasting methoden

      A11 Excel-probleemplanning

      Importeert historische data

      Wat kunt u doen met SmartForecasts?
      • Organiseer een Forecasting Tournament dat de juiste voorspellingsmethode voor elk item selecteert.
      • Handmatige forecasts met behulp van verschillende time-series forecasting methoden en non-statistical methoden.
      • Voorspel automatisch trends, seizoensinvloeden en cyclische patronen.
      • Importeert demand data uit bestanden
      • Maak gebruik van ERP-connectoren om automatisch demand data te importeren en forecasting resultaten te retourneren
      Voor wie is SmartForecasts bedoeld?

      • Demand Planners.
      • Forecasting analisten.
      • Materiaal- en voorraadplanners.
      • Operationele onderzoeksprofessionals.
      • Verkoopanalisten.
      • Statistisch ingestelde leidinggevenden.

      Een betrouwbaar en veilig platform