De rol van vertrouwen in het vraagvoorspellingsproces Deel 2: Wat vertrouwt u

"Ongeacht hoeveel moeite er wordt gestoken in het opleiden van voorspellers en het ontwikkelen van uitgebreide ondersteuningssystemen voor prognoses, besluitvormers zullen de voorspellingen wijzigen of negeren als ze ze niet vertrouwen." — Dilek Onkal, International Journal of Forecasting 38:3 (juli-september 2022), p.802.

De hierboven geciteerde woorden trokken mijn aandacht en leidden tot dit bericht. Degenen met een nerdachtige overtuiging, zoals uw blogger, zijn geneigd prognoses als een statistisch probleem te beschouwen. Hoewel dat duidelijk waar is, begrijpen degenen van een bepaalde leeftijd, zoals uw blogger, dat prognoses ook een sociale activiteit zijn en daarom een grote menselijke component heeft.

Waar vertrouw je op?

Er is een verwante dimensie van vertrouwen: niet wie vertrouw je, maar wat vertrouw je? Hiermee bedoel ik zowel data als software.

Vertrouw op gegevens

Vertrouwen in data ondersteunt het vertrouwen in de voorspeller die de data gebruikt. De meeste van onze klanten hebben hun gegevens in een ERP-systeem staan. Deze gegevens moeten worden begrepen als een belangrijk bedrijfsmiddel. Om de gegevens betrouwbaar te laten zijn, moeten ze de "drie C's" hebben, dwz ze moeten correct, volledig en actueel zijn.

Correctheid is uiteraard fundamenteel. We hadden eens een klant die een nieuw, sterk prognoseproces aan het implementeren was, maar vond dat de resultaten volledig haaks stonden op hun gevoel voor wat er in het bedrijf gebeurde. Het bleek dat verschillende van hun datastromen een factor twee onjuist waren, wat een enorme fout is. Dit vertraagde natuurlijk het implementatieproces totdat ze alle grove fouten in hun vraaggegevens konden identificeren en corrigeren.

Er is een minder voor de hand liggend punt over correctheid. Dat wil zeggen, gegevens zijn willekeurig, dus wat u nu ziet, is waarschijnlijk niet wat u hierna ziet. Het plannen van de productie op basis van de veronderstelling dat de vraag van volgende week precies hetzelfde zal zijn als de vraag van deze week is duidelijk dwaas, maar klassieke op formules gebaseerde voorspellingsmodellen zoals de hierboven genoemde exponentiële afvlakking zullen hetzelfde aantal projecteren over de hele prognosehorizon. Dit is waar op scenario's gebaseerde planning is essentieel om het hoofd te bieden aan de onvermijdelijke fluctuaties in belangrijke variabelen zoals de eisen van klanten en de doorlooptijden van leveranciers.

Volledigheid is de tweede vereiste om gegevens te kunnen vertrouwen. Onze software haalt uiteindelijk veel van zijn waarde uit het blootleggen van de verbanden tussen operationele beslissingen (bijvoorbeeld het selecteren van bestelpunten voor het aanvullen van voorraad) en bedrijfsgerelateerde statistieken zoals voorraadkosten. Toch loopt de implementatie van prognosesoftware vaak vertraging op omdat ergens vraaginformatie beschikbaar is, maar voorraad-, bestel- en/of tekortkosten niet. Of, om nog een recent voorbeeld te noemen: een klant kon slechts de helft van zijn voorraad reserveonderdelen voor repareerbare onderdelen op de juiste maat houden, omdat niemand had bijgehouden wanneer de andere helft kapot ging, wat betekent dat er geen informatie was over de gemiddelde tijd vóór storing (MTBF). , wat betekent dat het niet mogelijk was om het pechgedrag van de helft van de vloot van repareerbare reserveonderdelen te modelleren.

Ten slotte is de valuta van gegevens van belang. Naarmate de snelheid van zakendoen toeneemt en bedrijfsplanningscycli afnemen van een driemaandelijks of maandelijks tempo naar een wekelijks of dagelijks tempo, wordt het wenselijk om de flexibiliteit te benutten die wordt geboden door 's nachts uploads van dagelijkse transactiegegevens naar de cloud. Dit maakt hoogfrequente aanpassingen van prognoses en/of voorraadbeheerparameters mogelijk voor artikelen met een hoge volatiliteit en plotselinge verschuivingen in de vraag. Hoe verser de gegevens, hoe betrouwbaarder de analyse.

Vertrouw op software voor vraagvoorspelling

Zelfs met gegevens van hoge kwaliteit moeten voorspellers nog steeds vertrouwen op de analytische software die de gegevens verwerkt. Dit vertrouwen moet zich uitstrekken tot zowel de software zelf als de computationele omgeving waarin deze functioneert.

Als voorspellers lokale software gebruiken, moeten ze vertrouwen op hun eigen IT-afdelingen om de gegevens te beschermen en beschikbaar te houden voor gebruik. Als ze in plaats daarvan de kracht van cloudgebaseerde analyses willen benutten, moeten klanten hun vertrouwelijke informatie toevertrouwen aan hun softwareleveranciers. Software op professioneel niveau, zoals de onze, rechtvaardigt het vertrouwen van klanten door middel van SOC 2-certificering. SOC 2-certificering is ontwikkeld door het American Institute of CPA's en definieert criteria voor het beheer van klantgegevens op basis van vijf "trustservice-principes": beveiliging, beschikbaarheid, verwerkingsintegriteit, vertrouwelijkheid en privacy.

Hoe zit het met de software zelf? Wat is er nodig om het betrouwbaar te maken? De belangrijkste criteria hierbij zijn de juistheid van algoritmen en functionele betrouwbaarheid. Als de leverancier een professioneel programma-ontwikkelingsproces heeft, is de kans klein dat de software door een programmeerfout uiteindelijk de verkeerde cijfers berekent. En als de leverancier een rigoureus kwaliteitsborgingsproces heeft, is de kans klein dat de software crasht net wanneer de voorspeller een deadline heeft of een pop-upanalyse voor een speciale situatie moet verwerken.

Overzicht

Om bruikbaar te zijn, moeten voorspellers en hun voorspellingen worden vertrouwd door besluitvormers. Dat vertrouwen is afhankelijk van kenmerken van voorspellers en hun processen en communicatie. Het hangt ook af van de kwaliteit van de gegevens en software die worden gebruikt bij het maken van de prognoses.

 

Lees hier het 1e deel van deze Blog “Who do you Trust”: https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-1-who/

 

 

 

De rol van vertrouwen in het vraagvoorspellingsproces Deel 1: Wie vertrouwt u

 

"Ongeacht hoeveel moeite er wordt gestoken in het opleiden van voorspellers en het ontwikkelen van uitgebreide ondersteuningssystemen voor prognoses, besluitvormers zullen de voorspellingen wijzigen of negeren als ze ze niet vertrouwen." — Dilek Onkal, International Journal of Forecasting 38:3 (juli-september 2022), p.802.

De hierboven geciteerde woorden trokken mijn aandacht en leidden tot dit bericht. Degenen met een nerdachtige overtuiging, zoals uw blogger, zijn geneigd prognoses als een statistisch probleem te beschouwen. Hoewel dat duidelijk waar is, begrijpen degenen van een bepaalde leeftijd, zoals uw blogger, dat prognoses ook een sociale activiteit zijn en daarom een grote menselijke component heeft.

Wie vertrouw je?

Vertrouwen is altijd tweerichtingsverkeer, maar laten we aan de kant van de vraagvoorspeller blijven. Welke kenmerken van en acties van voorspellers en vraagplanners bouwen vertrouwen op in hun werk? De hierboven geciteerde professor Onkal besprak academisch onderzoek over dit onderwerp dat teruggaat tot 2006. Ze vatte de resultaten samen van praktijkonderzoeken die belangrijke vertrouwensfactoren identificeerden met betrekking tot de kenmerken van de voorspeller, het prognoseproces en de communicatie over prognoses.

Voorspeller kenmerken

De sleutel tot het opbouwen van vertrouwen onder de gebruikers van prognoses is de perceptie van de competentie en objectiviteit van de voorspeller en vraagplanner. Competentie heeft een wiskundige component, maar veel managers verwarren computervaardigheden met analytische vaardigheden, dus gebruikers van prognosesoftware kunnen deze hindernis meestal nemen. Aangezien de twee echter niet hetzelfde zijn, loont het om de training van uw leverancier op u te nemen en niet alleen de wiskunde maar ook het jargon van uw prognosesoftware te leren. Vertrouwen kan mijns inziens ook worden vergroot door kennis te tonen van de business van het bedrijf.

Objectiviteit is ook een sleutel tot betrouwbaarheid. Het kan ongemakkelijk zijn voor de voorspeller om af en toe in afdelingsruzies terecht te komen, maar die komen naar boven en moeten met tact worden behandeld. Ruzies? Nou, silo's bestaan en kantelen in verschillende richtingen. Verkoopafdelingen geven de voorkeur aan hogere vraagprognoses die de productie verhogen, zodat ze nooit hoeven te zeggen: "Sorry, we zijn vers van dat." Voorraadbeheerders zijn op hun hoede voor prognoses met een hoge vraag, omdat "overmatig enthousiasme" ervoor kan zorgen dat ze de zak vasthouden en op een opgeblazen voorraad zitten.

Soms wordt de voorspeller een de facto scheidsrechter, en moet in deze rol openlijke tekenen van objectiviteit vertonen. Dat kan betekenen dat eerst moet worden erkend dat bij elke managementbeslissing goede dingen moeten worden afgewogen tegen andere goede dingen, bijvoorbeeld productbeschikbaarheid versus gestroomlijnde operaties, en dat de partijen vervolgens moeten worden geholpen om een pijnlijke maar aanvaardbare balans te vinden door de verbanden tussen operationele beslissingen en de belangrijkste prestatiestatistieken aan het licht te brengen. die belangrijk zijn voor mensen als Chief Financial Officers.

Het prognoseproces

Het prognoseproces kan worden beschouwd als drie fasen: gegevensinvoer, berekeningen en uitvoer. In elke fase kunnen acties worden ondernomen om het vertrouwen te vergroten.

 

Wat betreft ingangen:

Het vertrouwen kan worden vergroot als duidelijk relevante invoer op zijn minst wordt erkend als deze niet direct in berekeningen wordt gebruikt. Factoren zoals het sentiment op sociale media en het onderbuikgevoel van regionale verkoopmanagers kunnen dus legitieme onderdelen zijn van een consensusproces voor prognoses. Objectiviteit vereist echter dat deze vermeende winstvoorspellers objectief worden getoetst. Een professioneel prognoseproces kan bijvoorbeeld heel goed een subjectieve aanpassing van statistische prognoses omvatten, maar moet dan ook beoordelen of de aanpassingen uiteindelijk de nauwkeurigheid verbeteren en niet alleen dat sommige mensen zich gehoord voelen.

Wat betreft de tweede fase, berekeningen:

De voorspeller zal worden vertrouwd in de mate dat hij in staat is om meer dan één manier te gebruiken om prognoses te berekenen en vervolgens een goede reden kan verwoorden waarom hij voor de uiteindelijk gebruikte methode heeft gekozen. Daarnaast moet de voorspeller in toegankelijke taal kunnen uitleggen hoe zelfs ingewikkelde technieken hun werk doen. Het is moeilijk om vertrouwen te stellen in een 'black box'-methode die zo ondoorzichtig is dat hij ondoorgrondelijk is. Het belang van verklaarbaarheid wordt nog versterkt door het feit dat de leidinggevende van de voorspeller op zijn beurt in staat moet zijn om de keuze van de gebruikte techniek te verantwoorden. hun leidinggevende.

Exponentiële afvlakking gebruikt bijvoorbeeld deze vergelijking: S(t) = αX(t)+(1-α)S(t-1). Veel voorspellers zijn bekend met deze vergelijking, maar veel voorspellingsgebruikers niet. Er is een verhaal dat de vergelijking verklaart in termen van het gemiddelde van irrelevante "ruis" in de vraaggeschiedenis van een artikel en de noodzaak om een balans te vinden tussen het wegwerken van ruis en het vermogen om te reageren op plotselinge verschuivingen in het niveau van de vraag. De voorspeller die dat verhaal kan vertellen, zal geloofwaardiger zijn. (Mijn eigen versie van dat verhaal gebruikt uitdrukkingen uit de sport, dwz "hoofdvervalsingen" en "jukes". Het vinden van folkachtige analogen die geschikt zijn voor uw specifieke publiek, loont altijd.)

Een laatste punt: best practice vereist dat elke voorspelling vergezeld gaat van een eerlijke beoordeling van de onzekerheid ervan. Een voorspeller die vertrouwen probeert op te bouwen door te specifiek te zijn ("Verkoop volgend kwartaal zal 12.184 eenheden zijn") zal altijd falen. Een voorspeller die zegt: "De verkoop in het volgende kwartaal heeft een kans dat de 90% tussen de 12.000 en 12.300 eenheden valt", zal zowel vaker correct zijn als ook nuttiger voor besluitvormers. Per slot van rekening is prognoses in wezen een taak van risicobeheer, dus de besluitvormer is er het beste mee gediend als hij de risico's kent.

Prognose communicatie:

Overweeg ten slotte de derde fase, communicatie van prognoseresultaten. Onderzoek wijst uit dat voortdurende communicatie met prognosegebruikers vertrouwen opbouwt. Het vermijdt die afschuwelijke, leeglopende momenten waarop een mooi opgemaakt rapport wordt neergeschoten vanwege een fatale fout die had kunnen worden voorzien: "Dit is niet goed omdat je geen rekening hebt gehouden met X, Y of Z" of "We wilden echt u om resultaten opgerold te presenteren naar de top van de producthiërarchieën (of per verkoopregio of per productlijn of…)”.

Zelfs als iedereen op één lijn zit met wat er wordt verwacht, wordt het vertrouwen vergroot door resultaten te presenteren met behulp van goed gemaakte grafische afbeeldingen, met enorme numerieke tabellen als back-up, maar niet als de belangrijkste manier om resultaten te communiceren. Mijn ervaring is dat, net als een apparaat om vergaderingen te controleren, een grafiek meestal veel beter is dan een grote numerieke tabel. Bij een grafiek is ieders aandacht op hetzelfde gericht en zijn veel aspecten van de analyse direct (en letterlijk) zichtbaar. Bij een resultatentabel valt de deelnemerstafel vaak uiteen in nevengesprekken waarin elke stem zich richt op verschillende delen van de tafel.

Onkal vat het onderzoek als volgt samen: "Take-aways voor degenen die prognoses maken en degenen die ze gebruiken, komen samen rond duidelijkheid van communicatie en percepties van competentie en integriteit."

Waar vertrouw je op?

Er is een verwante dimensie van vertrouwen: niet wie vertrouw je, maar wat vertrouw je? Hiermee bedoel ik zowel data als software….  Lees hier het 2e deel van deze Blog “Wat vertrouw je”.  https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-2-what/

 

 

 

 

5 tips voor het maken van slimme prognoses

In de ruim veertig jaar dat Smart Software voorspellingssoftware levert, hebben we veel mensen ontmoet die, misschien verrassend, vraagvoorspellers worden. Deze blog is in de eerste plaats bedoeld voor die gelukkige individuen die op het punt staan om aan dit avontuur te beginnen (hoewel doorgewinterde pro's de opfriscursus misschien leuk vinden).

Welkom op het veld! Goede prognoses kunnen een groot verschil maken voor de prestaties van uw bedrijf, of u nu prognoses maakt ter ondersteuning van verkoop, marketing, productie, voorraad of financiën.

Er is veel wiskunde en statistiek die aan de vraag ten grondslag liggen voorspellingsmethoden, dus je opdracht suggereert dat je niet een van die wiskunde-fobische mensen bent die liever dichters zouden zijn. Gelukkig, als je je een beetje wankel voelt en nog niet genezen bent van je meetkundeles op de middelbare school, is veel van de wiskunde ingebouwd in voorspellingssoftware, dus je eerste taak is om de wiskunde voor later te laten terwijl je een zicht krijgt op de grote afbeelding. Het is inderdaad een grote afbeelding, maar laten we een paar van de ideeën isoleren die u het meest zullen helpen slagen.

 

  1. Vraagvoorspelling is een teamsport. Zelfs in een klein bedrijf maakt de vraagplanner deel uit van een team, waarbij sommige mensen de gegevens brengen, sommigen de technologie en sommigen het zakelijke oordeel. In een goed geleide onderneming zal het nooit uw taak zijn om simpelweg wat gegevens in een programma in te voeren en een prognoserapport te verzenden. Veel bedrijven hebben een proces aangenomen dat Sales and Operations Planning (S&OP) wordt genoemd, waarbij uw prognose wordt gebruikt om een vergadering te starten om bepaalde beoordelingen te maken (bijvoorbeeld: moeten we ervan uitgaan dat deze trend zich zal voortzetten? overprognose?) en om extra informatie in de uiteindelijke prognose op te nemen (bijv. input van het verkooppersoneel, business intelligence over bewegingen van concurrenten, promoties). De implicatie voor u is dat uw vaardigheden op het gebied van luisteren en communiceren belangrijk zullen zijn voor uw succes.

 

  1. Motoren voor statistische prognoses hebben goede brandstof nodig. Historische gegevens zijn de brandstof die wordt gebruikt door statistische prognoseprogramma's, dus slechte of ontbrekende of vertraagde gegevens kunnen uw werkproduct degraderen. Bij je functie hoort impliciet een aspect van kwaliteitscontrole en je moet de gegevens die je aangeleverd worden scherp in de gaten houden. Onderweg is het een goed idee om de IT-mensen tot je vrienden te maken.

 

  1. Uw naam staat op uw prognoses. Of ik het nu leuk vind of niet, als ik voorspellingen naar de commandostructuur stuur, worden ze bestempeld als 'Tom's voorspellingen'. Ik moet bereid zijn die nummers te bezitten. Om mijn plaats aan tafel te verdienen, moet ik kunnen uitleggen op welke gegevens mijn voorspellingen waren gebaseerd, hoe ze werden berekend, waarom ik methode A in plaats van methode B gebruikte om de berekeningen uit te voeren, en vooral hoe stevig of zacht ze zijn. Hier is eerlijkheid belangrijk. Van geen enkele voorspelling kan redelijkerwijs worden verwacht dat deze perfect nauwkeurig is, maar niet van alle managers kan worden verwacht dat ze volkomen redelijk zijn. Als u pech heeft, denkt uw management dat uw meldingen van onzekerheid voorspellen wijzen op onwetendheid of incompetentie. In werkelijkheid duiden ze op professionaliteit. Ik heb geen bruikbaar advies over hoe je zulke managers het beste kunt managen, maar ik kan je er wel voor waarschuwen. Het is aan jou om degenen die je prognoses gebruiken op te leiden. De beste managers zullen dat waarderen.

 

  1. Laat uw spreadsheets achter. Het is niet ongebruikelijk dat iemand wordt gepromoveerd tot voorspeller omdat ze geweldig waren met Excel. Tenzij u bij een ongewoon klein bedrijf werkt, overstijgt de schaal van moderne bedrijfsprognoses wat u met spreadsheets aankunt. De toenemende snelheid van zakendoen verergert het probleem: het slaperige tempo van jaarlijkse en driemaandelijkse planningsvergaderingen maakt snel plaats voor wekelijkse of zelfs dagelijkse herprognoses naarmate de omstandigheden veranderen. Wees dus voorbereid op een professionele leverancier van moderne, schaalbare cloudgebaseerde software voor vraagplanning en statistische prognose voor training en ondersteuning.

 

  1. Denk visueel. Het zal zeer nuttig zijn, zowel bij het beslissen hoe u vraagprognoses genereert als bij het presenteren ervan aan het management, dus profiteer van de visualisatiemogelijkheden die in de prognosesoftware zijn ingebouwd. Zoals ik hierboven al opmerkte, kunnen de gegevens waarmee u werkt in de huidige hoogfrequente zakenwereld snel veranderen, dus wat u vorige maand deed, is deze maand misschien niet de juiste keuze. Houd uw gegevens letterlijk in de gaten door eenvoudige grafieken te maken, zoals "timeplots" die zaken als trend of seizoensinvloeden of (vooral) veranderingen in trend of seizoensinvloeden of anomalieën laten zien die moeten worden aangepakt. Evenzo kan het zeer nuttig zijn in een S&OP-proces om tabellen met prognoses aan te vullen met grafieken waarin huidige prognoses worden vergeleken met eerdere prognoses met werkelijke cijfers. Tijdplots met waarden uit het verleden, voorspelde waarden en 'prognose-intervallen' die de objectieve onzekerheid in de prognoses aangeven, bieden bijvoorbeeld een solide basis voor uw team om de boodschap in uw prognoses ten volle te waarderen.

 

Dat is genoeg voor nu. Als iemand die al een halve eeuw lesgeeft aan universiteiten, ben ik geneigd om met de statistische kant van voorspellingen te beginnen, maar dat bewaar ik voor een andere keer. De vijf bovenstaande tips zouden u kunnen helpen als u uitgroeit tot een belangrijk onderdeel van uw bedrijfsplanningsteam. Welkom bij het spel!

 

 

 

Supply Chain Math: neem geen mes mee naar een vuurgevecht

Of je het nu zelf tot in detail begrijpt of vertrouwt op betrouwbare software, wiskunde is voor iedereen een feit voorraadbeheer en eis voorspelling die hoopt concurrerend te blijven in de moderne wereld.

Op een conferentie onlangs verkondigde de hoofdpresentator in een workshop voorraadbeheer trots dat hij geen behoefte had aan 'hooguitziende wiskunde', waarvan werd uitgelegd dat het iets betekende dat verder ging dan wiskunde van de zesde klas.

Wiskunde is niet ieders eerste liefde. Maar als je er echt om geeft je werk goed te doen, kun je het werk niet benaderen met een basisschoolmentaliteit. Supply chain-taken zoals vraagprognoses en voorraadbeheer zijn dat wel inherent wiskundig. De blog die is gekoppeld aan edX, een vooraanstaande site voor online cursusmateriaal voor hogescholen, heeft een geweldig bericht over dit onderwerp, op https://www.mooc.org/blog/how-is-math-used-in-supply-chain. Ik citeer het eerste stukje:

Wiskunde en de bevoorradingsketen gaan hand in hand. Naarmate toeleveringsketens groeien, zal de toenemende complexiteit bedrijven ertoe aanzetten om manieren te zoeken om grootschalige besluitvorming te beheren. Ze kunnen niet teruggaan naar hoe toeleveringsketens 100 jaar geleden waren – of zelfs twee jaar geleden vóór de pandemie. In plaats daarvan zullen nieuwe technologieën helpen bij het stroomlijnen en beheren van de vele bewegende delen. De logistieke vaardigheden, optimalisatietechnologieën en organisatorische vaardigheden die in de toeleveringsketen worden gebruikt, vereisen allemaal wiskunde.

Onze klanten hoeven geen experts te zijn in supply chain-wiskunde, ze moeten alleen de software kunnen gebruiken die de wiskunde bevat. Software combineert de ervaring van gebruikers en inhoudelijke expertise om resultaten te produceren die het verschil maken tussen succes en falen. Om zijn werk te doen, kan de software niet stoppen bij wiskunde in de zesde klas; het heeft waarschijnlijkheid, statistiek en optimalisatietheorie nodig.

Het is aan ons, softwareleveranciers, om de wiskunde zo te verpakken dat wat er in de berekeningen komt, het enige is dat relevant is, zelfs als het ingewikkeld is; en dat wat eruit komt duidelijk, besluitrelevant en verdedigbaar is wanneer u uw aanbevelingen aan het hoger management moet rechtvaardigen.

Wiskunde van de zesde klas kan u niet waarschuwen wanneer de manier waarop u voorstelt een kritiek reserveonderdeel te beheren, een 70%-kans betekent dat u uw doel voor artikelbeschikbaarheid niet haalt. Het kan u niet vertellen hoe u uw bestelpunten het beste kunt aanpassen wanneer een leverancier belt en zegt: "We hebben een leveringsprobleem." Het kan je huid niet redden als er een verrassend grote bestelling is en je snel moet uitzoeken wat de beste manier is om een aantal versnelde speciale bestellingen op te zetten zonder het operationele budget te vernietigen.

Respecteer dus de volkswijsheid en neem geen mes mee naar een vuurgevecht.

 

 

Planning van serviceonderdelen: planning voor verbruiksonderdelen versus repareerbare onderdelen

Bij het bepalen van de juiste opslagparameters voor reserveonderdelen en serviceonderdelen, is het belangrijk om onderscheid te maken tussen verbruiksartikelen en repareerbare serviceonderdelen. Deze verschillen worden vaak over het hoofd gezien door service software voor onderdelenplanning en kan onjuist zijn schattingen van wat er moet worden opgeslagen. Er zijn verschillende benaderingen vereist bij het plannen van verbruiksartikelen versus repareerbare reserveonderdelen.

Laten we eerst deze twee soorten reserveonderdelen definiëren.

  • Verbruiksartikelen zijn reserveonderdelen in de apparatuur die worden vervangen in plaats van gerepareerd wanneer ze defect raken. Voorbeelden van verbruiksartikelen zijn batterijen, oliefilters, schroeven en remblokken. Verbruiksbare reserveonderdelen zijn doorgaans goedkopere onderdelen waarvoor vervanging goedkoper is dan reparatie of reparatie is misschien niet mogelijk.
  • Herstelbare onderdelen zijn onderdelen die kunnen worden gerepareerd en weer in gebruik kunnen worden genomen nadat ze defect zijn geraakt door oorzaken zoals slijtage, schade of corrosie. Repareerbare serviceonderdelen zijn meestal duurder dan verbruiksonderdelen, dus reparatie heeft meestal de voorkeur boven vervanging. Voorbeelden van repareerbare onderdelen zijn tractiemotoren in treinwagons, straalmotoren en kopieermachines.

Traditionele software voor het plannen van reserveonderdelen voldoet niet

Traditionele software voor het plannen van onderdelen is niet goed aangepast om met de willekeur aan zowel de vraagzijde als de aanbodzijde van MRO-activiteiten om te gaan.

Willekeurigheid aan de vraagzijde
Planning voor verbruikbare reserveonderdelen vereist berekening van parameters voor voorraadbeheer (zoals bestelpunten en bestelhoeveelheden, min- en max-niveaus en veiligheidsvoorraden). Het plannen van het beheer van repareerbare serviceonderdelen vereist berekening van het juiste aantal reserveonderdelen. In beide gevallen moet de analyse gebaseerd zijn op waarschijnlijkheidsmodellen van het willekeurig gebruik van verbruiksgoederen of het willekeurig uitvallen van herstelbare onderdelen. Voor meer dan 90% van deze onderdelen is dit willekeurig de vraag is "met tussenpozen" (soms "klonterig" of "alles behalve normaal verdeeld" genoemd). Traditionele prognosemethoden voor reserveonderdelen zijn niet ontwikkeld om met een wisselende vraag om te gaan. Vertrouwen op traditionele methoden leidt tot kostbare planningsfouten. Voor verbruiksgoederen betekent dit vermijdbare voorraden, buitensporige transportkosten en meer verouderde voorraden. Voor repareerbare onderdelen betekent dit buitensporige uitvaltijd van apparatuur en de daarmee gepaard gaande kosten van onbetrouwbare prestaties en verstoring van de bedrijfsvoering.

Willekeurigheid aan de aanbodzijde
Bij het plannen van verbruikbare reserveonderdelen moet rekening worden gehouden met willekeur bij het aanvullen doorlooptijden van leveranciers. Bij het plannen van repareerbare onderdelen moet rekening worden gehouden met willekeur in reparatie- en retourprocessen, of deze nu intern worden uitgevoerd of worden uitbesteed. Planners die deze items beheren, negeren vaak bruikbare bedrijfsgegevens. In plaats daarvan kunnen ze hun vingers kruisen en hopen dat alles goed komt, of ze kunnen een beroep doen op hun instinct om "hoorbare geluiden te roepen" en dan hopen dat alles goed komt. Hopen en raden kunnen niet op tegen goede kansmodellering. Het verspilt jaarlijks miljoenen aan onnodige kapitaalinvesteringen en vermijdbare uitvaltijd van apparatuur.

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.