The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

Demand planners have to cope with multiple problems to get their job done. One is the Irritation of Intermittency. The “now you see it, now you don’t” character of intermittent demand, with its heavy mix of zero values, forces the use of advanced statistical methods, such as Smart Software’s patented Markov Bootstrap algorithm. But even within the dark realm of intermittent demand, there are degrees of difficulty: planners must further cope with the potentially costly Scourge of Skewness.

Skewness is a statistical term describing the degree to which a demand distribution is not symmetrical. The classic (and largely mythic) “bell-shaped” curve is symmetric, with equal chances of demand in any time period falling below or above the average. In contrast, a skewed distribution is lopsided, with most values falling either above or below the average. In most cases, demand data are positively skewed, with a long tail of values extending toward the higher end of the demand scale.

Bar graphs of two time series
Figure 1: Two intermittent demand series with different levels of skewness
Figure 1 shows two time series of 60 months of intermittent demand. Both are positively skewed, but the data in the bottom panel are more skewed. Both series have nearly the same average demand, but the one on top is a mix of 0’s, 1’s and 2’s, while the one on the bottom is a mix of 0’s, 1’s and 4’s.

What makes positive skewness a problem is that it reduces an item’s fill rate. Fill rate is an important inventory management performance metric. It measures the percentage of demand that is satisfied immediately from on-hand inventory. Any backorders or lost sales reduce the fill rate (besides squandering customer good will).

Fill rate is a companion to the other key performance metric: Service level. Service level measures the chance that an item will stock out during the replenishment lead time. Lead time is measured from the moment when inventory drops to or below an item’s reorder point, triggering a replenishment order, until the arrival of the replacement inventory.

Inventory management software, such as Smart Software’s SmartForecasts, can analyze demand patterns to calculate the reorder point required to achieve a specified service level target. To hit a 95% service level for the item in the top panel of Figure 1, assuming a lead time of 1 month, the required reorder point is 3; for the bottom item, the reorder point is 1. (The first reorder point is 3 to allow for the distinct possibility that future demand values will exceed the largest values, 2, observed so far. In fact, values as large as 8 are possible.) See Figure 2.

Histograms of two time series
Figure 2: Distributions of total demand during a replenishment lead time of 1 month
(Figure 2 plots the predicted distribution of demand over the lead time. The green bars represent the probability that any particular level of demand will materialize.)

Using the required reorder point of 3 units, the fill rate for the less skewed item is a healthy 93%. However, the fill rate for the more skewed item is a troubling 44%, even though this item too achieves a service level of 95%. This is the scourge of skewness.

The explanation for the difference in fill rates is the degree of skewness. The reorder point for the more skewed item is 1 unit. Having 1 unit on hand at the start of the lead time will be sufficient to handle 95% of the demands arriving during a 1 month lead time. However, the monthly demand could reach above 15 units, so when the more skewed unit stocks out, it will “stock out big time”, losing a much larger number of units.

Most demand planners would be proud to achieve a 95% service level and a 93% fill rate. Most would be troubled, and puzzled, by achieving the 95% service level but only a 44% fill rate. This partial failure would not be their fault: it can be traced directly to the nasty skewness in the distribution of monthly demand values.

There is no painless fix to this problem. The only way to boost the fill rate in this situation is to raise the service level target, which will in turn boost the reorder point, which finally will reduce both the frequency of stockouts and their size whenever they occur. In this example, raising the reorder point from 1 unit to 3 units will achieve a 99% service level and boost fill rate to a respectable, but not outstanding, 84%. This improvement would come at the cost of essentially tripling the dollars tied up in managing this more skewed item.

Thomas Willemain, PhD, co-founded Smart Software and currently serves as Senior Vice President for Research. Dr. Willemain also serves as Professor Emeritus of Industrial and Systems Engineering at Rensselear Polytechnic Institute and as a member of the research staff at the Center for Computing Sciences, Institute for Defense Analyses.

Leave a Comment

Related Posts

Confused about AI and Machine Learning?

Confused about AI and Machine Learning?

Are you confused about what is AI and what is machine learning? Are you unsure why knowing more will help you with your job in inventory planning? Don’t despair. You’ll be ok, and we’ll show you how some of whatever-it-is can be useful.

Centering Act: Spare Parts Timing, Pricing, and Reliability

Centering Act: Spare Parts Timing, Pricing, and Reliability

In this article, we’ll walk you through the process of crafting a spare parts inventory plan that prioritizes availability metrics such as service levels and fill rates while ensuring cost efficiency. We’ll focus on an approach to inventory planning called Service Level-Driven Inventory Optimization. Next, we’ll discuss how to determine what parts you should include in your inventory and those that might not be necessary. Lastly, we’ll explore ways to enhance your service-level-driven inventory plan consistently.

How to Forecast Inventory Requirements

How to Forecast Inventory Requirements

Forecasting inventory requirements is a specialized variant of forecasting that focuses on the high end of the range of possible future demand. Traditional methods often rely on bell-shaped demand curves, but this isn’t always accurate. In this article, we delve into the complexities of this practice, especially when dealing with intermittent demand.

Recent Posts

  • What is Inventory Control Planning Management Optimization DictionaryWhat is Inventory Planning? A Brief Dictionary of Inventory-Related Terms
    People involved in the supply chain are likely to have questions about various inventory terms and methods used in their jobs. This note may help by explaining these terms and showing how they relate. […]
  • artificial intelligence ai and machine learning inventory managementConfused about AI and Machine Learning?
    Are you confused about what is AI and what is machine learning? Are you unsure why knowing more will help you with your job in inventory planning? Don’t despair. You’ll be ok, and we’ll show you how some of whatever-it-is can be useful. […]
  • Centering Act Spare Parts Timing Pricing and ReliabilityCentering Act: Spare Parts Timing, Pricing, and Reliability
    In this article, we'll walk you through the process of crafting a spare parts inventory plan that prioritizes availability metrics such as service levels and fill rates while ensuring cost efficiency. We'll focus on an approach to inventory planning called Service Level-Driven Inventory Optimization. Next, we'll discuss how to determine what parts you should include in your inventory and those that might not be necessary. Lastly, we'll explore ways to enhance your service-level-driven inventory plan consistently. […]
  • Balance,Concept,With,Chrome,Balls,inventory optimization softwareHow to Forecast Inventory Requirements
    Forecasting inventory requirements is a specialized variant of forecasting that focuses on the high end of the range of possible future demand. Traditional methods often rely on bell-shaped demand curves, but this isn't always accurate. In this article, we delve into the complexities of this practice, especially when dealing with intermittent demand. […]
  • Demand Planning twin brothers holding forecasting toolsSix Demand Planning Best Practices You Should Think Twice About
    Every field, including forecasting, accumulates folk wisdom that eventually starts masquerading as “best practices.” These best practices are often wise, at least in part, but they often lack context and may not be appropriate for certain customers, industries, or business situations. There is often a catch, a “Yes, but”. This note is about six usually true forecasting precepts that nevertheless do have their caveats. […]

    Inventory Optimization for Manufacturers, Distributors, and MRO

    • Centering Act Spare Parts Timing Pricing and ReliabilityCentering Act: Spare Parts Timing, Pricing, and Reliability
      In this article, we'll walk you through the process of crafting a spare parts inventory plan that prioritizes availability metrics such as service levels and fill rates while ensuring cost efficiency. We'll focus on an approach to inventory planning called Service Level-Driven Inventory Optimization. Next, we'll discuss how to determine what parts you should include in your inventory and those that might not be necessary. Lastly, we'll explore ways to enhance your service-level-driven inventory plan consistently. […]
    • 5 Steps to Improve the Financial Impact of Spare Parts Planning5 Steps to Improve the Financial Impact of Spare Parts Planning
      In today’s competitive business landscape, companies are constantly seeking ways to improve their operational efficiency and drive increased revenue. Optimizing service parts management is an often-overlooked aspect that can have a significant financial impact. Companies can improve overall efficiency and generate significant financial returns by effectively managing spare parts inventory. This article will explore the economic implications of optimized service parts management and how investing in Inventory Optimization and Demand Planning Software can provide a competitive advantage. […]
    • Bottom Line strategies for Spare Parts Planning SoftwareBottom Line Strategies for Spare Parts Planning
      Managing spare parts presents numerous challenges, such as unexpected breakdowns, changing schedules, and inconsistent demand patterns. Traditional forecasting methods and manual approaches are ineffective in dealing with these complexities. To overcome these challenges, this blog outlines key strategies that prioritize service levels, utilize probabilistic methods to calculate reorder points, regularly adjust stocking policies, and implement a dedicated planning process to avoid excessive inventory. Explore these strategies to optimize spare parts inventory and improve operational efficiency. […]
    • professional technician engineer planning spare parts in industrial manufacturing factory,Prepare your spare parts planning for unexpected shocks
      In today's unpredictable business climate, we do have to worry about supply chain disruptions, long lead times, rising interest rates, and volatile demand. With all these challenges, it's never been more vital for organizations to accurately forecast parts usage, stocking levels, and to optimize replenishment policies such as reorder points, safety stocks, and order quantities. In this blog, we'll explore how companies can leverage innovative solutions like inventory optimization and parts forecasting software that utilize machine learning algorithms, probabilistic forecasting, and analytics to stay ahead of the curve and protect their supply chains from unexpected shocks. […]