12 Causes of Overstocking and Practical Solutions

Inventory overstocking can harm both financial stability and operational efficiency. When an organization is overstocked, it ties up capital in excess inventory that might not sell, increasing storage costs and the risk of inventory obsolescence. Additionally, the funds used to purchase the excess inventory could have been better invested in other areas of the business, such as marketing or research and development. Overstocking also hampers cash flow, as money is locked in stock rather than available for immediate operational needs. Managing inventory effectively is critical for maintaining a healthy balance sheet and ensuring that resources are optimally allocated. Here is an in-depth exploration of the main causes of overstocking, their implications, and possible solutions.

 

1 Inaccurate Demand Forecasting

One of the primary causes of overstocking is inaccurate demand forecasting. When businesses rely on outdated forecasting methods or insufficient data, they can easily overestimate demand, leading to overstocking. A prime example is the clothing industry, where fashion trends can change rapidly. A well-known fashion brand recently faced challenges after overestimating demand for a new clothing line based on flawed data analysis, leading to unsold inventory.

To address this issue, companies can implement new technologies that automatically select the best forecasting methods for the data, incorporating trends and seasonal patterns to ensure accuracy. By improving forecasting accuracy, businesses can better align their inventory with actual demand, leading to more precise inventory management and fewer overstock scenarios. For instance, a Hardware retailer using Smart Demand Planner reduced forecasting errors by 15%, demonstrating the potential for significant improvement in inventory management​​​​.

 

2 Improper Inventory Management

Effective inventory management is fundamental to prevent overstocking. Without accurate systems to track inventory levels, businesses might order excess stock and incur higher expenses. This issue often stems from reliance on spreadsheets or inefficient ERP systems that lack real-time data integration.

State-of-the-art technologies provide real-time visibility into inventory levels, allowing businesses to automate and optimize reordering processes.  A large electric utility company faced challenges in maintaining service parts availability without overstocking, managing over 250,000 part numbers across a diverse network of power generation and distribution facilities. The company replaced its outdated system with Smart IP&O and integrated it in real-time with their Enterprise Asset Management (EAM) system. Smart IP&O enabled the utility to use “what-if” scenarios, creating digital twins of alternate stocking policies and simulating performance across key performance indicators, such as inventory value, service levels, fill rates, and shortage costs. This allowed the utility to make targeted adjustments to their stocking parameters, which were then deployed to their EAM system, driving optimal replenishments of spare parts.

The outcome was significant: a $9 million reduction in inventory, freeing up cash and valuable warehouse space while sustaining target service levels of over 99%​

 

3 Overly Optimistic Sales Projections

Businesses, especially those in growth phases, may predict higher sales than they achieve, leading to excess inventory intended to meet anticipated demand that never materializes. An example of this is the recent case with an electric vehicle manufacturer that projected high sales for its truck but faced production delays and lower-than-expected demand, resulting in an overstock of components and parts. This miscalculation led to increased storage costs and strained financial resources.

Another automotive aftermarket company struggled to forecast intermittently demanded parts accurately, frequently resulting in overstocking and stockouts.  Using AI-driven technology enabled the company to significantly reduce backorders and lost sales, with fill rates improving from 93% to 96% within just three months. By leveraging Smart IP&O forecasting technologies, the company could generate accurate estimates of cumulative demand over lead times, providing better visibility of potential demand scenarios. This allowed for optimized inventory levels, reducing storage costs and improving financial efficiency by aligning inventory with actual demand​.

 

4 Bulk Purchasing Discounts

The appeal of cost savings from bulk purchases can prompt businesses to buy more than needed, tying up capital and storage space. This often leads to storage challenges when excess stock is ordered to secure a discount.

To address this challenge, businesses should weigh the benefits of bulk discounts against the costs of holding excess inventory. Next-generation technology can help identify the most cost-effective purchasing strategy by balancing immediate savings with long-term storage costs. By implementing Smart IP&O, MNR could accurately forecast inventory requirements and optimize its inventory management processes. This led to an 8% reduction in parts inventory, reaching a high customer service level of 98.7% and reducing inventory growth for new equipment from a projected 10% to only 6%.

 

5 Seasonal Demand Fluctuations

Difficulty in aligning inventory with seasonal demand can result in surplus stock once the peak sales period ends. Toy manufacturers, for example, might produce too many holiday-themed toys only to face low demand after the holidays. The fashion industry frequently experiences similar challenges, with certain styles becoming obsolete as seasons change. The latest technologies can help businesses anticipate seasonal demand shifts and adjust inventory levels accordingly. By analyzing past sales data and predicting future trends, businesses can better prepare for seasonal fluctuations, minimize overstocking risk, and improve inventory turnover.

 

6 Supplier Lead Time Variability

Unreliable supplier lead times can lead to overstocking as a buffer against delays. If lead times improve or demand decreases unexpectedly, businesses may have excess inventory. For example, an auto parts distributor might stockpile components to mitigate supplier delays, only to find lead times improving suddenly.

12 Causes of Overstocking and Practical Solutions

Advanced technology can help by providing real-time data and predictive analytics to manage lead time variability better. These tools allow companies to dynamically adjust their orders, reducing the need for excessive safety stock.

 

7 Inadequate Inventory Policies

Outdated or incorrect inventory policies, such as faulty Min/Max settings, can lead to over-ordering.  However, using Modern technology to regularly review and update inventory policies ensures they align with current business needs and market conditions. By keeping policies up-to-date, businesses can reduce the risk of overstocking due to procedural errors. A recent case study demonstrated how a major retailer used Smart IP&O to revise inventory policies, resulting in a 15% reduction in overstock​​.

 

 

8 Promotions and Marketing Campaigns

Misalignment between marketing efforts and actual customer demand can cause businesses to overestimate the impact of promotions, resulting in unsold inventory. For example, a cosmetics company might overproduce a limited edition product, expecting high demand that doesn’t materialize. Leveraging Smart IP&O can help align marketing initiatives with realistic demand expectations, avoiding excess stock. By integrating marketing plans with demand forecasts, businesses can optimize their promotional strategies to better match actual customer interest.

 

9 Fear of Stockouts

Companies often maintain higher inventory levels to avoid stockouts, which can lead to lost sales and unhappy customers. This fear can drive businesses to overstock as a safety net, especially in industries where customer satisfaction and retention are crucial. A notable example comes from a large retail chain that significantly increased its inventory of household goods to avoid stockouts. While this strategy initially helped meet customer demand, it later resulted in excess inventory as consumer purchasing patterns stabilized. This overstocking contributed to a profit drop of nearly 90% in the second quarter, largely due to markdowns and the clearing of excess stock.

To mitigate such situations, businesses can utilize advanced inventory planning and optimization tools to provide accurate demand forecasts. For instance, a leading electronics manufacturer used Smart IP&O solution to reduce inventory levels by 20% without impacting service levels, effectively reducing costs while maintaining customer satisfaction by ensuring they had the right amount of stock on hand​​​​.

 

10 Overcompensation for Supply Chain Issues

Businesses may overstock to safeguard against ongoing supply chain disruptions, but this can lead to storage issues. For instance, a tech company might stockpile components to avoid potential supply chain hiccups, resulting in surplus inventory and increased costs. Advanced systems can help businesses better anticipate and respond to supply chain challenges, balancing the need for safety stock with the risk of overstocking. A technology firm used Smart IP&O to streamline its inventory strategy, reducing excess stock by 20% while maintaining supply chain resilience​​.

 

11 Long Lead Times and Unreliable Suppliers

Prolonged lead times and unreliable suppliers can lead businesses to order more stock than needed to cover potential supply gaps. However, less critical Items that are forecasted to achieve very high service levels represent opportunities to reduce inventory.  By targeting lower service levels on less critical items, inventory will be “right size” over time to the new equilibrium, decreasing holding costs and the value of inventory on hand. A major public transit system reduced inventory by more than $4,000,000 while improving service levels using our cutting-edge technology.

 

12 Lack of Real-Time Inventory Visibility

Without real-time insights into inventory, businesses often order more stock than necessary, leading to inefficiencies and increased costs. Smart IP&O enabled Seneca companies to model demand at each stocking location and, using service level-driven planning, determine how much to stock to achieve the service level we require.  By running and comparing different scenarios, they can easily define and update optimal stocking policies for each tech support rep and stockrooms.

The software has provided field technicians with evidence they did not have before, showing them their actual consumption, frequency of part use, and rationale for stocking policies, using 90% as the targeted service level norm.  Field technicians have embraced its use, with significant results:  “Zero Turns” inventory has dropped from $400K to under $100K, “First Fix Rate” exceeds 90%, and total inventory investment has decreased by more than 25%, from $11 million to $ 8 million.

 

In conclusion, overstocking seriously threatens business profitability and efficiency, leading to increased storage costs, tied-up capital, and potential obsolescence of goods. These issues can strain resources and limit a company’s ability to respond to market changes. However, overstocking can be effectively managed by understanding its causes, such as inaccurate demand forecasting, prolonged lead times, and unreliable suppliers. Implementing robust AI-driven solutions like Smart IP&O can help businesses optimize inventory levels, reduce excess stock, and enhance operational efficiency. By leveraging advanced forecasting and inventory optimization tools, companies can find the right balance in meeting customer demand and minimizing inventory-related costs.

 

Rethinking forecast accuracy: A shift from accuracy to error metrics

Measuring the accuracy of forecasts is an undeniably important part of the demand planning process. This forecasting scorecard could be built based on one of two contrasting viewpoints for computing metrics. The error viewpoint asks, “how far was the forecast from the actual?” The accuracy viewpoint asks, “how close was the forecast to the actual?” Both are valid, but error metrics provide more information.

Accuracy is represented as a percentage between zero and 100, while error percentages start at zero but have no upper limit. Reports of MAPE (mean absolute percent error) or other error metrics can be titled “forecast accuracy” reports, which blurs the distinction.  So, you may want to know how to convert from the error viewpoint to the accuracy viewpoint that your company espouses.  This blog describes how with some examples.

Accuracy metrics are computed such that when the actual equals the forecast then the accuracy is 100% and when the forecast is either double or half of the actual, then accuracy is 0%. Reports that compare the forecast to the actual often include the following:

  • The Actual
  • The Forecast
  • Unit Error = Forecast – Actual
  • Absolute Error = Absolute Value of Unit Error
  • Absolute % Error = Abs Error / Actual, as a %
  • Accuracy % = 100% – Absolute % Error

Look at a couple examples that illustrate the difference in the approaches. Say the Actual = 8 and the forecast is 10.

Unit Error is 10 – 8 = 2

Absolute % Error = 2 / 8, as a % = 0.25 * 100 = 25%

Accuracy = 100% – 25% = 75%.

Now let’s say the actual is 8 and the forecast is 24.

Unit Error is 24– 8 = 16

Absolute % Error = 16 / 8 as a % = 2 * 100 = 200%

Accuracy = 100% – 200% = negative is set to 0%.

In the first example, accuracy measurements provide the same information as error measurements since the forecast and actual are already relatively close. But when the error is more than double the actual, accuracy measurements bottom out at zero. It does correctly indicate the forecast was not at all accurate. But the second example is more accurate than a third, where the actual is 8 and the forecast is 200. That’s a distinction a 0 to 100% range of accuracy doesn’t register. In this final example:

Unit Error is 200 – 8 = 192

Absolute % Error = 192 / 8, as a % = 24 * 100 = 2,400%

Accuracy = 100% – 2,400% = negative is set to 0%.

Error metrics continue to provide information on how far the forecast is from the actual and arguably better represent forecast accuracy.

We encourage adopting the error viewpoint. You simply hope for a small error percentage to indicate the forecast was not far from the actual, instead of hoping for a large accuracy percentage to indicate the forecast was close to the actual.  This shift in mindset offers the same insights while eliminating distortions.

 

 

 

 

Don’t Blame Excess Stock on “Bad” Sales / Customer Forecasts

Sales forecasts are often inaccurate simply because the sales team is forced to give a number even though they don’t really know what their customer demand is going to be. Let the sales teams sell.  Don’t bother playing the game of feigning acceptance of these forecasts when both sides (sales and supply chain) know it is often nothing more than a WAG.   Do this instead:

  • Accept demand variability as a fact of life. Develop a planning process that does a better job account for demand variability.
  • Agree on a level of stockout risk that is acceptable across groups of items.
  • Once the stockout risk is agreed to, use software to generate an accurate estimate of the safety stock needed to counter the demand variability.
  • Get buy-in. Customers must be willing to pay a higher price per unit for you to deliver extremely high service levels.  Salespeople must accept that certain items are more likely to have backorders if they prioritize inventory investment on other items.
  • Using a consensus #safetystock process ensures you are properly buffering and setting the right expectations with sales, customers, finance, and supply chain.

 

When you do this, you free all parties from having to play the prediction game they were not equipped to play in the first place. You’ll get better results, such as higher service levels with lower inventory costs. And with much less finger-pointing.

 

 

 

 

A Practical Guide to Growing a Professional Forecasting Process

Many companies looking to improve their forecasting process don’t know where to start. It can be confusing to contend with learning new statistical methods, making sure data is properly structured and updated, agreeing on who “owns” the forecast, defining what ownership means, and measuring accuracy. Having seen this over forty-plus years of practice, we wrote this blog to outline the core focus and to encourage you to keep it simple early on.

1. Objectivity. First, understand and communicate that the Demand Planning and Forecasting process is an exercise in objectivity. The focus is on getting inputs from various sources (stakeholders, customers, functional managers, databases, suppliers, etc.) and deciding whether those inputs add value. For example, if you override a statistical forecast and add 20% to the projection, you should not just assume that you automatically got it right. Instead, be objective and check whether that override increased or decreased forecast accuracy. If you find that your overrides made things worse, you’ve gained something: This informs the process and you know to better scrutinize override decisions in the future.

2.  Teamwork. Recognize that forecasting and demand planning are team sports. Agree on who will captain the team. The captain is responsible for creating the baseline statistical forecasts and supervising the demand planning process. But results depend on everyone on the team making positive contributions, providing data, suggesting alternative methodologies, questioning assumptions, and executing recommended actions. The final results are owned by the company and every single stakeholder.

3. Measurement. Don’t fixate on industry forecast accuracy benchmarks. Every SKU has its own level of “forecastability”, and you may be managing any number of difficult items. Instead, create your own benchmarks based on a sequence of increasingly advanced forecasting methods. Advanced statistical forecasts may seem dauntingly complex at first, so start simple with a basic method, such as forecasting the historical average demand. Then measure how close that simple forecast comes to the actual observed demand. Work up from there to techniques that deal with complications like trend and seasonality. Measure progress using accuracy metrics calculated by your software, such as the mean absolute percentage error (MAPE). This will allow your company to get a little bit better each forecast cycle.

4. Tempo. Then focus efforts on making forecasting a standalone process that isn’t combined with the complex process of inventory optimization. Inventory management is built on a foundation of sound demand forecasting, but it is focused on other topics: what to purchase, when to purchase, minimum order quantities, safety stocks, inventory levels, supplier lead times, etc. Let inventory management go to later. First build up “forecasting muscle” by creating, reviewing, and evolving the forecasting process to have a regular cadence. When your process is sufficiently matured, catch up with the increasing speed of business by increasing the tempo of your forecasting process to at least a monthly cadence.

Remarks

Revising a company’s forecasting process can be a major step. Sometimes it happens when there is executive turnover, sometimes when there is a new ERP system, sometimes when there is new forecasting software. Whatever the precipitating event, this change is an opportunity to rethink and refine whatever process you had before. But trying to eat the whole elephant in one go is a mistake. In this blog, we’ve outlined some discrete steps you can take to make for a successful evolution to a better forecasting process.

 

 

 

 

Types of forecasting problems we help solve

Here are examples of forecasting problems that SmartForecasts can solve, along with the kinds of business data representative of each.

Forecasting an item based on its pattern

Given the following six quarterly sales figures, what sales can you expect for the third and fourth quarters of 2023?

Forecasting an item based on its pattern

Sales by Quarter

SmartForecasts gives you many ways to approach this problem. You can make your own statistical forecasts using any of six different exponential smoothing and moving average methods. Or, like most nontechnical forecasters, you can use the time-saving Automatic command, which has been programmed to automatically select and use the most accurate method for your data. Finally, to incorporate your business judgment into the forecasting process, you can graphically adjust any statistical forecast result using SmartForecasts’ “eyeball” adjustment capabilities.

 

Forecasting an item based on its relationship to other variables.

Given the following historical relationship between unit sales and the number of sales representatives, what sales levels can you expect when the planned increase in sales staff takes place over the final two quarters of 2023?

Forecasting an item based on its relationship to other variables.

Sales and Sales Representatives by Quarter

You can answer a question like this using SmartForecasts’ powerful Regression command, designed specifically to facilitate forecasting applications that require regression analysis solutions. Regression models with an essentially unlimited number of independent/predictor variables are possible, although most useful regression models use only a handful of predictors.

 

Simultaneously forecasting a number of product items and their total

Given the following total sales for all dress shirts and the distribution of sales by color, what will individual and total sales be over the next six months?

Forecasting an item based on its relationship to other variables.

Monthly Dress Shirt Sales by Color

SmartForecasts’ unique Group Forecasting features automatically and simultaneously forecasts closely related time series, such as these items in the same product group. This saves considerable time and provides forecast results not only for the individual items but also for their total. “Eyeball” adjustments at both the item and group levels are easy to make. You can quickly create forecasts for product groups with hundreds or even thousands of items.

 

Forecasting thousands of items automatically

Given the following record of product demand at the SKU level, what can you expect demand to be over the next six months for each of the 5,000 SKUs?

Forecasting thousands of items automatically

Monthly Product Demand by SKU (Stock Keeping Unit)

In just a few minutes, SmartForecasts’ powerful Automatic Selection can take a forecasting job of this size, read the product demand data, automatically create statistical forecasts for each SKU, and saves the result. The results are then ready for export to your ERP system leveraging any one of our API-based connectors or via file export.  Once set up, forecasts will automatically be produced each planning cycle without intervention by the user.

 

Forecasting demand that is most often zero

A distinct and especially challenging type of data to forecast is intermittent demand, which is most often zero but jumps up to random nonzero values at random times. This pattern is typical of demand for slow moving items, such as service parts or big ticket capital goods.

For example, consider the following sample of demand for aircraft service parts. Note the preponderance of zero values with nonzero values mixed in, often in bursts.

Forecasting demand that is most often zero

SmartForecasts has a unique method designed especially for this type of data: the Intermittent Demand forecasting feature. Since intermittent demand arises most often in the context of inventory control, this feature focuses on forecasting the range of likely values for the total demand over a lead time, e.g., cumulative demand over the period Jun-23 to Aug-23 in the example above.

 

Forecasting inventory requirements

Forecasting inventory requirements is a specialized variant of forecasting that focuses on the high end of the range of possible future values.

For simplicity, consider the problem of forecasting inventory requirements for just one period ahead, say one day ahead. Usually, the forecasting job is to estimate the most likely or average level of product demand. However, if available inventory equals the average demand, there is about a 50% chance that demand will exceed inventory, resulting in lost sales and/or lost good will. Setting the inventory level at, say, ten times the average demand will probably eliminate the problem of stockouts, but will just as surely result in bloated inventory costs.

The trick of inventory optimization is to find a satisfactory balance between having enough inventory to meet most demand without tying up too many resources in the process. Usually, the solution is a blend of business judgment and statistics. The judgmental part is to define an acceptable inventory service level, such as meeting 95% of demand immediately from stock. The statistical part is to estimate the 95th percentile of demand.

When not dealing with intermittent demand, SmartForecasts estimates the required inventory level by assuming a bell-shaped (Normal) curve of demand, estimating both the middle and the width of the bell curve, then using a standard statistical formula to estimate the desired percentile. The difference between the desired inventory level and the average level of demand is called the safety stock because it protects against the possibility of stockouts.

When dealing with intermittent demand, the bell-shaped curve is a poor approximation to the statistical distribution of demand. In this special case, SmartForecasts uses patented intermittent demand forecasting technology to estimate the required inventory service level.