Head to Head: Which Service Parts Inventory Policy is Best?

Our customers have usually settled into one way to manage their service parts inventory. The professor in me would like to think that the chosen inventory policy was a reasoned choice among considered alternatives, but more likely it just sort of happened. Maybe the inventory honcho from long ago had a favorite and that choice stuck. Maybe somebody used an EAM or ERP system that offered only one choice. Perhaps there were some guesses made, based on the conditions at the time.

The Competitors

Too seldom, businesses make these choices in haphazard ways. But modern service parts planning software lets you be more systematic about your choices. This post demonstrates that proposition by making objective comparisons among three popular inventory policies:  Order Up To, Reorder Point/Order Quantity, and Min/Max.  I discussed each of these policies in this video blog.

  • Order Up To. This is a periodic review policy where every T days, on-hand inventory is tallied and an order of random size is placed to bring the stock level back up to S units.
  • Q, R or Reorder Point/Order Quantity. Q, R is a continuous review policy where every day, inventory is tallied. If there are Q or fewer units on hand, an order of fixed size is placed for R more units.
  • Min, Max is another continuous review policy where every day, inventory is tallied. If there are Min or fewer units on hand, an order is placed to bring the stock level back up to Max units.

Inventory theory says these choices are listed in increasing order of effectiveness. The first option, Order Up To, is clearly the simplest and cheapest to implement, but it closes its eyes to what’s going on for long periods of time.  Imposing a specified passage of time in between orders makes it, in theory, less flexible. In contrast, the two continuous review options keep an eye on what’s happening all the time, so they can react to potential stockouts quicker. The Min/Max option is, in theory, more flexible than the option that uses a fixed reorder quantity because the size of the order dynamically changes to accommodate the demand.

That’s the theory. This post examines evidence from head-to-head comparisons to check the theory and put concrete numbers on the relative performance of the three policies.

The Meaning of “Best”

How should we keep score in this tournament? If you are a regular reader of this Smart Forecaster blog, you know that the core of inventory planning is a tug-of-war between two opposing objectives: keeping inventory lean vs keeping item availability metrics such as service level high.

To simplify things, we will compute “one number to rule them all”: the average operating cost. The winning policy will be the one with the lowest average.

This average is the sum of three components: the cost of holding inventory (“holding cost”), the cost of ordering replenishment units (“ordering cost”) and the cost of losing a sale (“shortage cost”). To make things concrete, we used the following assumptions:

  • Each service part is valued at $1,000.
  • Annual holding cost is 10% of item value, or $100 per year per unit.
  • Processing each replenishment order costs $20 per order.
  • Each unit demanded but not provided costs the value of the part, $1,000.

For simplicity, we will refer to the average operating cost as simply “the cost”.

Of course, the lowest average cost can be achieved by getting out of the business. So the competition required a performance constraint on item availability: Each option had to achieve a fill rate of at least 99%.

The Alternatives Duke it Out

A key element of context is whether stockouts result in losses or backorders. Assuming that the service part in question is critical, we assumed that unfilled orders are lost, which means that a competitor fills the order. In an MRO environment, this will mean additional downtime due to stockout.

To compare the alternatives, we used our predictive modeling engine to run a large number of Monte Carlo simulations.  Each simulation involved specifying the parameter values of each policy (e.g., Min and Max values), generating a demand scenario, feeding that into the logic of the policy, and measuring the resulting cost averaged over 365 days of operation. Repeating this process 1,000 times and averaging the 1,000 resulting costs gave the final result for each policy.  

To make the comparison fair, each alternative had to be designed for its best performance. So we searched the “design space” of each policy to find the design with the lowest cost. This required repeating the process described in the previous paragraph for many pairs of parameter values and identifying the pair yielding the lost average annual operating cost.

Using the algorithms in Smart Inventory Optimization (SIOTM) we made head-to-head-to-head comparisons under the following assumptions about demand and supply:

  • Item demand was assumed to be intermittent and highly variable but relatively simple in that there was neither trend nor seasonality, as is often true for service parts. Daily mean demand was 5 units with a large standard deviation of 13 units. Figure 1 shows a sample of one year’s demand. We have chosen a very challenging demand pattern, in which some days have 10 to even 20 times the average demand.

Daily part demand was assumed to be intermittent and very spikey.

Figure 1: Daily part demand was assumed to be intermittent and very spikey.

​​

  • Suppliers’ replenishment lead times were 14 days 75% of the time and 21 days otherwise. This reflects the fact that there is always uncertainty in the supply chain.

 

And the Winner Is…

Was the theory right? Kinda’ sorta’.

Table 1 shows the results of the simulation experiments. For each of the three competing policies, it shows the average annual operating cost, the margin of error (technically, an approximate 95% confidence interval for the mean cost), and the apparent best choices for parameter values.

Results of the simulated comparisons

Table 1: Results of the simulated comparisons

For example, the average cost for the (T,S) policy when T is fixed at 30 days was $41,680. But the Plus/Minus implies that the results are compatible with a “true” cost (i.e., the estimate from an infinite number of simulations) of anywhere between $39,890 and $43,650. The reason there is so much statistical uncertainty is the extremely spikey nature of demand in this example.

Table 1 says that, in this example, the three policies fall in line with expectations. However, more useful conclusions would be:

  1. The three policies are remarkably similar in average cost. By clever choice of parameter values, one can get good results out of any of the three policies.
  2. Not shown in Table 1, but clear from the detailed simulation results, is that poor choices for parameter values can be disastrous for any policy.
  3. It is worth noting that the periodic review (T,S) policy was not allowed to optimize over possible values of T. We fixed T at 30 to mimic what is common in practice, but those who use the periodic review policy should consider other review periods. An additional experiment fixed the review period at T = 7 days. The average cost in this scenario was minimized at $36,551 ± $1,668 with S = 343. This result is better than that using T = 30 days.
  4. We should be careful about over-generalizing these results. They depend on the assumed values of the three cost parameters (holding, ordering and shortage) and the character of the demand process.
  5. It is possible to run experiments like those shown here automatically in Smart Inventory Optimization. This means that you too would be able to explore design choices in a rigorous way.

 

 

 

Four Common Mistakes when Planning Replenishment Targets

Whether you are using ‘Min/Max’ or ‘reorder point’ and ‘order quantity’ to determine when and how much to restock, your approach might deliver or deny huge efficiencies. Key mistakes to avoid:

 

  1. Not recalibrating regularly
  2. Only reviewing Min/Max when there is a problem
  3. Using Forecasting methods not up to the task
  4. Assuming data is too slow moving or unpredictable for it to matter

 

We have over 150,000 SKU x Location combinations. Our demand is intermittent. Since it’s slow moving, we don’t need to recalculate our reorder points often. We do so maybe once annually but review the reorder points whenever there is a problem.” – Materials Manager.

 

This reactive approach will lead to millions in excess stock, stock outs, and lots of wasted time reviewing data when “something goes wrong.” Yet, I’ve heard this same refrain from so many inventory professionals over the years. Clearly, we need to do more to share why this thinking is so problematic.

It is true that for many parts, a recalculation of the reorder points with up-to-date historical data and lead times might not change much, especially if patterns such as trend or seasonality aren’t present. However, many parts will benefit from a recalculation, especially if lead times or recent demand has changed. Plus, the likelihood of significant change that necessitates a recalculation increases the longer you wait. Finally, those months with zero demands also influence the probabilities and shouldn’t be ignored outright. The key point though is that it is impossible to know what will change or won’t change in your forecast, so it’s better to recalibrate regularly.

 

  Planning Replenishment Targets Software calculate

This standout case from real world data illustrates a scenario where regular and automated recalibration shines—the benefits from quick responses to changing demand patterns like these add up quickly. In the above example, the X axis represents days, and the Y axis represents demand. If you were to wait several months between recalibrating your reorder points, you’d undoubtedly order far too soon. By recalibrating your reorder point far more often, you’ll catch the change in demand enabling much more accurate orders.

 

Rather than wait until you have a problem, recalibrate all parts every planning cycle at least once monthly. Doing so takes advantage of the latest data and proactively adjusts the stocking policy, thus avoiding problems that would cause manual reviews and inventory shortages or excess.

The nature of your (potentially varied) data also needs to be matched with the right forecasting tools. If records for some parts show trend or seasonal patterns, using targeting forecasting methods to accommodate these patterns can make a big difference. Similarly, if the data show frequent zero values (intermittent demand), forecasting methods not built around this special case can easily deliver unreliable results.

Automate, recalibrate and review exceptions. Purpose built software will do this automatically. Think of it another way: is it better to dump a bunch of money into your 401K once per year or “dollar cost average” by depositing smaller, equally sized amounts throughout the year. Recalibrating policies regularly will yield maximized returns over time, just as dollar cost averaging will do for your investment portfolio.

How often do you recalibrate your stocking policies? Why?

 

 

Managing Inventory amid Regime Change

​If you hear the phrase “regime change” on the news, you immediately think of some fraught geopolitical event. Statisticians use the phrase differently, in a way that has high relevance for demand planning and inventory optimization. This blog is about “regime change” in the statistical sense, meaning a major change in the character of the demand for an inventory item.

An item’s demand history is the fuel that powers demand planners’ forecasting machines. In general, the more fuel the better, giving us a better fix on the average level, the volatility, the size and frequency of any spikes, the shape of any seasonality pattern, and the size and direction of any trend.

But there is one big exception to the rule that “more data is better data.” If there is a major shift in your world and new demand doesn’t look like old demand, then old data become dangerous.

Modern software can make accurate forecasts of item demand and suggest wise choices for inventory parameters like reorder points and order quantities. But the validity of these calculations depends on the relevance of the data used in their calculation. Old data from an old regime no longer reflect current reality, so including them in calculations creates forecast error for demand planners and either excess stock or unacceptable stockout rates for inventory planners.

That said, if you were to endure a recent regime change and throw out the obsolete data, you would have a lot less data to work with. This has its own costs, because all the estimates computed from the data would have greater statistical uncertainty even though they would be less biased. In this case, your calculations would have to rely more heavily on a blend of statistical analysis and your own expert judgement.

At this point, you may ask “How can I know if and when there has been a regime change?” If you’ve been on the job for a while and are comfortable looking at timeplots of item demand, you will generally recognize regime change when you see it, at least if it’s not too subtle. Figure 1 shows some real-world examples that are obvious.

Figure 1 Four examples of regime change in real-world item demand

Figure 1: Four examples of regime change in real-world item demand

 

Unfortunately, less obvious changes can still have significant effects. Moreover, most of our customers are too busy to manually review all the items they manage even once per quarter. When you get beyond, say, 100 items, the task of eyeballing all those time series becomes onerous. Fortunately, software can do a good job of continuously monitoring demand for tens of thousands of items and alerting you to any items that may need your attention. Then too, you can arrange for the software to not only detect regime change but also automatically exclude from its calculations all data collected before the most recent regime change, if any. In other words, you can get both automatic warning of regime change and automatic protection from regime change.

For more on the basics of regime change, see our previous blog on the topic: https://smartcorp.com/blog/demandplanningregimechange/  

 

An Example with Numbers in It

If you would like to learn more, read on to see a numerical example of how much regime change can alter the calculation of a reorder point for a critical spare part. Here is a scenario to illustrate the point.

Scenario

  • Goal: calculate the reorder point needed to control the risk of stockout while waiting for replenishment. Assume the target stockout risk is 5%.
  • Assume the item has intermittent daily demand, with many days of zero demand.
  • Assume daily demand has a Poisson distribution with an average of 1.0 units per day.
  • Assume the replenishment lead time is always 30 days.
  • The lead time demand will be random, so it will have a probability distribution and the reorder point will be the 95th percentile of the distribution.
  • Assume the effect of regime change is to either raise or lower the mean daily demand.
  • Assume there is one year of daily data available for estimating the mean daily unit demand.

 

Figure 2 Example of change in mean demand and sample of random daily demand

Figure 2 Example of change in mean demand and sample of random daily demand

 

Figure 2 shows one form of this scenario. The top panel shows that the average daily demand increases from 1.0 to 1.5 after 270 days. The bottom panel shows one way that a year’s worth of daily demand might appear. (At this point, you may be feeling that calculating all this stuff is complicated, even for what turns out to be a simplified scenario. That is why we have software!)

Analysis

Successful calculation of the proper reorder point will depend on when regime change happens and how big a change occurs. We simulated regime changes of various sizes at various times within a 365 day period. Around a base demand of 1.0 units per day, we studied shifts in demand (“shift”) of ±25% and ±50% as well as a no change reference case. We located the time of the change (“t.break”) at 90, 180, and 270 days. In each case, we computed two estimates of the reorder point: The “ideal” value given perfect knowledge of the average demand in the new regime (“ROP.true”), and the estimated value of mean demand computed by ignoring the regime change and using all the demand data for the past year (“ROP.all”).

Table 1 shows the estimates of the reorder point computed over 100 simulations. The center block is the reference case, in which there is no change in the daily demand, which remains fixed at 1 unit per day. The colored block at the bottom is the most extreme increasing scenario, with demand increasing to 1.5 units/day either one-third, one-half, or two-thirds of the way through the year.

We can draw several conclusions from these simulations.

ROP.true: The correct choice for reorder point increases or decreases according to the change in mean demand after the regime change. The relationship is not a simple linear one: the table spans a 600% range of demand levels (0.25 to 1.50) but a 467% range of reorder points (from 12 to 56).

ROP.all: Ignoring the regime change can lead to gross overestimates of the reorder point when demand drops and gross underestimates when demand increases.  As we would expect, the later the regime change, the worse the error. For example, if demand increases from 1.0 to 1.5 units per day two-thirds of the way through the year without being noticed, the calculated reorder point of 43 units would fall 13 units short of where it should be.

A word of caution: Table 1 shows that basing the calculations of reorder points using only data from after a regime change will usually get the right answer. What it doesn’t show is that the estimates can be unstable if there is very little demand history after the change. Therefore, in practice, you should wait to react to the regime change until a decent number of observations have accumulated in the new regime. This might mean using all the demand history, both pre- and post-change, until, say, 60 or 90 days of history have accumulated before ignoring pre-change data.

 

Table 1 Correct and Estimated Reorder Points for different regime change scenarios

Table 1 Correct and Estimated Reorder Points for different regime change scenarios

The Supply Chain Blame Game: Top 3 Excuses for Inventory Shortage and Excess

1. Blaming Shortages on Lead Time Variability
Suppliers will often be late, sometimes by a lot. Lead time delays and supply variability are supply chain facts of life, yet inventory carrying organizations are often caught by surprise when a supplier is late.  An effective inventory planning process embraces these facts of life and develops policies that effectively account for this uncertainty.  Sure, there will be times when lead time delays come out of nowhere.  But most often the stocking policies like reorder points, safety stocks, and Min/Max levels aren’t recalibrated often enough to catch changes in the lead time over time.  Many companies only review the reorder point after it has been breached, instead of recalibrating after each new lead time receipt.  We’ve observed situations where the Min/Max settings are only recalibrated annually or are even entirely manual.  If you have a mountain of parts using old Min/Max levels and associated lead times that were relevant a year ago, it should be no surprise that you don’t have enough inventory to hold you until the next order arrives.

 

2. Blaming Excess on Bad Sales/Customer Forecasts
Forecasts from your customers or your sales team are often intentionally over-estimated to ensure supply, in response to past inventory shortages where they were left out to dry. Or, the demand forecasts are inaccurate simply because the sales team doesn’t really know what their customer demand is going to be but are forced to give a number. Demand Variability is another supply chain fact of life, so planning processes need to do a better job account for it.  Why should rely on sales teams to forecast when they best serve the company by selling? Why bother playing the game of feigning acceptance of customer forecasts when both sides know it is often nothing more than a WAG?  A better way is to accept the uncertainty and agree on a degree of stockout risk that is acceptable across groups of items.  Once the stockout risk is agreed to, you can generate an accurate estimate of the safety stock needed to counter the demand variability.  The catch is getting buy-in, since you may not be able to afford super high service levels across all items.  Customers must be willing to pay a higher price per unit for you to deliver extremely high service levels.  Sales people must accept that certain items are more likely to have backorders if they prioritize inventory investment on other items.  Using a consensus safety stock process ensures you are properly buffering and setting the right expectations.  When you do this, you free all parties from having to play the prediction game they were not equipped to play in the first place.

 

3. Blaming Problems on Bad Data
“Garbage In/Garbage Out” is a common excuse for why now is not the right time to invest in planning software. Of course, it is true that if you feed bad data into a model, you won’t get good results, but here’s the thing:  someone, somewhere in the organization is planning inventory, building a forecast, and making decisions on what to purchase. Are they doing this blindly, or are they using data they have curated in a spreadsheet to help them make inventory planning decisions? Hopefully, the latter.  Combine that internal knowledge with software, automating data import from the ERP, and data cleansing.  Once harmonized, your planning software will provide continually updated, well-structured demand and lead time signals that now make effective demand forecasting and inventory optimization possible.  Smart Software cofounder Tom Willemain wrote in an IBF newsletter that “many data problems derive from data having been neglected until a forecasting project made them important.” So, start that forecasting project, because step one is making sure that “what goes in” is a pristine, documented, and accurate demand signal.

 

 

Demand Planning with Blanket Orders

Customer as Teacher

Our customers are great teachers who have always helped us bridge the gap between textbook theory and practical application of forecasting and demand planning. Our latest bit of schooling concerns “blanket orders” and how to account for them as part of the demand planning process. 

Expanding the Inventory Theory Textbook

Textbook inventory theory focuses on the three most used replenishment policies: (1) Periodic review order-up-to policy, designated (T, S) in the books (2) Continuous review policy with fixed order quantity, designated (R, Q) and (3) Continuous review order-up-to policy, designated (s, S) but usually called “Min/Max.” Our customers have pointed out that their actual ordering process often includes frequent use of “blanket orders.” This blog focuses on how to incorporate blanket orders into the demand planning process and details how to adjust stocking targets accordingly.

Demand Planning with Blanket Orders is Different

Blanket orders are contracts with suppliers for fixed replenishment quantities arriving at fixed intervals. For example, you might agree with your supplier to receive 20 units every 7 days via a blanket order rather than 60 to 90 units every 28 days under the Periodic Review policy. Blanket orders contrast even more with the Continuous Review policies, under which both order schedules and order quantities are random.  In general, it is efficient to build flexibility into the restocking process so that you order only what you need and only order when you need it. By that standard, Min/Max should make the most sense and blanket policies should make the least sense.

The Case for Blanket Policies

However, while efficiency is important, it is never the only consideration. One of our customers, let’s call them Company X, explained the appeal of blanket policies in their circumstances. Company X makes high-performance parts for motorcycles and ATV’s. They turn raw steel into cool things.  But they must deal with the steel. Steel is expensive. Steel is bulky and heavy. Steel is not something conjured overnight on a special-order basis. The inventory manager at Company X does not want to place large but random-sized orders at random times. He does not want to baby-sit a mountain of steel. His suppliers do not want to receive orders for random quantities at random times. And Company X prefers to spread out its payments. The result: Blanket orders.

The Fatal Flaw in Blanket Policies

For Company X, blanket orders are intended to even out replenishment buys and avoid unwieldy buildups of piles of steel before they are ready for use. But the logic behind continuous review inventory policies still applies. Surges in demand, otherwise welcome, will occur and can create stockouts. Likewise, pauses in demand can create excess demand. As time goes on, it becomes clear that a blanket policy has a fatal flaw: only if the blanket orders exactly match the average demand can they avoid runaway inventory in either direction, up or down. In practice, it will be impossible to exactly match average demand. Furthermore, average demand is a moving target and can drift up or down.

How to Incorporate Blanket Orders when Demand Planning 

A blanket policy does have advantages, but rigidity is its Achilles heel.  Demand planners will often improvise by adjusting future orders to handle changes in demand but this doesn’t scale across thousands of items.  To make the inventory replenishment policy robust against randomness in demand, we suggest a hybrid policy that begins with blanket orders but retains flexibility to automatically (not manually) order additional supply on an as-need basis. Supplementing the blanket policy with a Min/Max backup provides for adjustments without manual intervention. This combination will capture some of the advantages of blanket orders while protecting customer service and avoiding runaway inventory.

Designing a demand planning process that accounts for blanket orders properly requires choice of four control parameters. Two parameters are the fixed size and fixed timing of the blanket policy. Two more are the values of Min and Max. This leaves the inventory manager facing a four-dimensional optimization problem.  Advanced inventory optimization software will make it possible to evaluate choices for the values of the four parameters and to support negotiations with suppliers when crafting blanket orders.