Improve Forecast Accuracy by Managing Error

The Smart Forecaster

 Pursuing best practices in demand planning,

forecasting and inventory optimization

Improve Forecast Accuracy, Eliminate Excess Inventory, & Maximize Service Levels

In this video, Dr. Thomas Willemain, co-Founder and SVP Research, talks about improving Forecast Accuracy by Managing Error. This video is the first in our series on effective methods to Improve Forecast Accuracy.  We begin by looking at how forecast error causes pain and the consequential cost related to it. Then we will explain the three most common mistakes to avoid that can help us increase revenue and prevent excess inventory. Tom concludes by reviewing the methods to improve Forecast Accuracy, the importance of measuring forecast error, and the technological opportunities to improve it.

 

Forecast error can be consequential

Consider one item of many

  • Product X costs $100 to make and nets $50 profit per unit.
  • Sales of Product X will turn out to be 1,000/month over the next 12 months.
  • Consider one item of many

What is the cost of forecast error?

  • If the forecast is 10% high, end the year with $120,000 of excess inventory.
  • 100 extra/month x 12 months x $100/unit
  • If the forecast is 10% low, miss out on $60,000 of profit.
  • 100 too few/month x 12 months x $50/unit

 

Three mistakes to avoid

1. Ignoring error.

  • Unprofessional, dereliction of duty.
  • Wishing will not make it so.
  • Treat accuracy assessment as data science, not a blame game.

2. Tolerating more error than necessary.

  • Statistical forecasting methods can improve accuracy at scale.
  • Improving data inputs can help.
  • Collecting and analyzing forecast error metrics can identify weak spots.

3. Wasting time and money going too far trying to eliminate error.

  • Some product/market combinations are inherently more difficult to forecast. After a point, let them be (but be alert for new specialized forecasting methods).
  • Sometimes steps meant to reduce error can backfire (e.g., adjustment).
Leave a Comment

RECENT POSTS

Top Five Tips for New Demand Planners and Forecasters

Top Five Tips for New Demand Planners and Forecasters

Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field!

Recent Posts

  • Top Five Tips for New Demand Planners and ForecastersTop Five Tips for New Demand Planners and Forecasters
    Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field! […]
  • Dynamics Community Summit eventSmart Software to Present at Community Summit North America
    Smart Software's Channel Sales Director and Enterprise Solution Engineer, to present three sessions at this year’s Microsoft Dynamics Community Summit North America event in Orlando, FL. . […]

    Inventory Planning Becomes More Interesting

    The Smart Forecaster

     Pursuing best practices in demand planning,

    forecasting and inventory optimization

    Taiichi Ohno of Toyota is credited with inventing Just-In-Time (JIT) manufacturing in the 1950s. JIT ensures that a manufacturer produces only what is needed, only when required, and only in the necessary amount. That innovation has since had major impacts, some good, some less so.

    A recent New York Times article “How the World Ran out of Everything” describes some of the “less so” impacts.  For example, JIT has kept inventory costs very low improving return on assets.  This in turn is rewarded by Wall Street, so many companies have spent the last few decades reducing their inventories dramatically. Focused as they were on financials, many companies ignored the risks inherent in reducing inventories to the point that “lean” began to border on “emaciated.” Combined with increased globalization and new risks of supply interruption, stock-outs have abounded.

    Some industries have gone too far, leaving them exposed to disruption. In a competition to get to the lowest cost, companies have inadvertently concentrated their risk, been interrupted by shortages of raw materials or components, and sometimes forced to halt assembly lines. Wall Street does not look kindly on production halts.

    We all know that random events have added to the problem. First among them has been the Covid pandemic. As the pandemic has hindered factory operations and spread disarray in global shipping, many economies worldwide have been tormented by shortages of an immense range of goods — from computer chips to lumber to clothing.

    The damage is compounded when more unexpected things go wrong. The Suez Canal Blockage is a prime example, obstructing the main trade route between Europe and Asia. Recently, cyberattacks have added another layer of disruption.

    The reaction creates its own problems, just as the cyberattack on the Colonial Pipeline created gas shortages through panic buying. Suppliers start filling orders more slowly than usual. Manufacturers and distributors reverse course and increase inventories and diversify their suppliers to avoid future stockouts. Simply expanding warehouses may not deliver the solution, and the need to determine how much inventory to keep is more urgent every day.Manager In Warehouse With Inventory Management Software

    So how can you execute a real-world plan for JIT inventory amidst all this risk and uncertainty? The foundation of your response is your corporate data. Uncertainty has two sources: supply and demand. You need the facts for both.

    On the supply side, exploit the data you have on recent supplier lead times, which reflect the current turbulence. Don’t use average values when you can use probability distributions that reflect the full range of contingencies. Consider this comparison. Supplier A is now reliably filling orders in exactly 10 days. Supplier B also averages 10 days but does with a 78%/22% mix of 7 and 21 days. Both A and B have an average replenishment delay of 10 days, but the operational results they provide will be very different. You can only recognize this if you use probability models of inventory performance.

    On the demand side, similar considerations apply. First, recognize that there may have been a major shift in the character of item demand (statisticians call this a “regime change”), so purge from your analysis any data that represent the “good old days.” Then, again, stop thinking in terms of averages. While the average demand is important, it is not a sufficient descriptor of the problem you face. Equally important is the volatility of demand. Volatility is the reason you keep inventory in the first place. If demand were completely predictable, you would have neither stockouts nor excess inventory. Just as you need to estimate the full probability distribution of replenishment lead times, you need the full distribution of demand values.

    Once you understand the range of variability in both supply and demand, probabilistic forecasting will allow you to account for disruptions and unusual events. Software will convert your data on demand and lead times into huge numbers of scenarios representing how your next planning period might play out. Given those scenarios, the software can determine how best to meet your goals for such metrics as inventory costs and stockout rates. Using solutions such as Smart Inventory Optimization , you will confidently plan based on your targeted stockout risk with minimal inventory carrying cost. You may also consider letting the solution prescribe optimal service level targets by assessing the costs of additional inventory vs. stockout cost.

    In inventory planning, as in science, we cannot escape the reality of uncertainty and the impact of unusual events. We must plan accordingly: using inventory optimization software helps you identify the least-cost service level. This creates a coherent, company-wide effort that combines visibility into current operations with mathematically correct assessments of future risks and conditions.

    Inventory planning has become more “interesting” and requires a greater degree of risk awareness and agility. The right software can help.

     

    Leave a Comment

    Related Posts

    Call an Audible to Proactively Counter Supply Chain Noise

    Call an Audible to Proactively Counter Supply Chain Noise

    You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

    Recent Posts

    • Top Five Tips for New Demand Planners and ForecastersTop Five Tips for New Demand Planners and Forecasters
      Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field! […]
    • Dynamics Community Summit eventSmart Software to Present at Community Summit North America
      Smart Software's Channel Sales Director and Enterprise Solution Engineer, to present three sessions at this year’s Microsoft Dynamics Community Summit North America event in Orlando, FL. . […]

      Four Useful Ways to Measure Forecast Error

      The Smart Forecaster

       Pursuing best practices in demand planning,

      forecasting and inventory optimization

      Improve Forecast Accuracy, Eliminate Excess Inventory, & Maximize Service Levels

      In this video, Dr. Thomas Willemain, co-Founder and SVP Research, talks about improving forecast accuracy by measuring forecast error. We begin by overviewing the various types of error metrics: scale-dependent error, percentage error, relative error, and scale-free error metrics. While some error is inevitable, there are ways to reduce it, and forecast metrics are necessary aids for monitoring and improving forecast accuracy. Then we will explain the special problem of intermittent demand and divide-by-zero problems. Tom concludes by explaining how to assess forecasts of multiple items and how it often makes sense to use weighted averages, weighting items differently by volume or revenue.

       

      Four general types of error metrics 

      1. Scale-dependent error
      2. Percentage error
      3. Relative error
      4 .Scale-free error

      Remark: Scale-dependent metrics are expressed in the units of the forecasted variable. The other three are expresses as percentages.

       

      1. Scale-dependent error metrics

      • Mean Absolute Error (MAE) aka Mean Absolute Deviation (MAD)
      • Median Absolute Error (MdAE)
      • Root Mean Square Error (RMSE)
      • These metrics express the error in the original units of the data.
        • Ex: units, cases, barrels, kilograms, dollars, liters, etc.
      • Since forecasts can be too high or too low, the signs of the errors will be either positive or negative, allowing for unwanted cancellations.
        • Ex: You don’t want errors of +50 and -50 to cancel and show “no error”.
      • To deal with the cancellation problem, these metrics take away negative signs by either squaring or using absolute value.

       

      2. Percentage error metric

      • Mean Absolute Percentage Error (MAPE)
      • This metric expresses the size of the error as a percentage of the actual value of the forecasted variable.
      • The advantage of this approach is that it immediately makes clear whether the error is a big deal or not.
      • Ex: Suppose the MAE is 100 units. Is a typical error of 100 units horrible? ok? great?
      • The answer depends on the size of the variable being forecasted. If the actual value is 100, then a MAE = 100 is as big as the thing being forecasted. But if the actual value is 10,000, then a MAE = 100 shows great accuracy, since the MAPE is only 1% of the actual.

       

      3. Relative error metric

      • Median Relative Absolute Error (MdRAE)
      • Relative to what? To a benchmark forecast.
      • What benchmark? Usually, the “naïve” forecast.
      • What is the naïve forecast? Next forecast value = last actual value.
      • Why use the naïve forecast? Because if you can’t beat that, you are in tough shape.

       

      4. Scale-Free error metric

      • Median Relative Scaled Error (MdRSE)
      • This metric expresses the absolute forecast error as a percentage of the natural level of randomness (volatility) in the data.
      • The volatility is measured by the average size of the change in the forecasted variable from one time period to the next.
        • (This is the same as the error made by the naïve forecast.)
      • How does this metric differ from the MdRAE above?
        • They do both use the naïve forecast, but this metric uses errors in forecasting the demand history, while the MdRAE uses errors in forecasting future values.
        • This matters because there are usually many more history values than there are forecasts.
        • In turn, that matters because this metric would “blow up” if all the data were zero, which is less likely when using the demand history.

       

      Intermittent Demand Planning and Parts Forecasting

       

      The special problem of intermittent demand

      • “Intermittent” demand has many zero demands mixed in with random non-zero demands.
      • MAPE gets ruined when errors are divided by zero.
      • MdRAE can also get ruined.
      • MdSAE is less likely to get ruined.

       

      Recap and remarks

      • Forecast metrics are necessary aids for monitoring and improving forecast accuracy.
      • There are two major classes of metrics: absolute and relative.
      • Absolute measures (MAE, MdAE, RMSE) are natural choices when assessing forecasts of one item.
      • Relative measures (MAPE, MdRAE, MdSAE) are useful when comparing accuracy across items or between alternative forecasts of the same item or assessing accuracy relative to the natural variability of an item.
      • Intermittent demand presents divide-by-zero problems which favor MdSAE over MAPE.
      • When assessing forecasts of multiple items, it often makes sense to use weighted averages, weighting items differently by volume or revenue.
      Leave a Comment

      RECENT POSTS

      Top Five Tips for New Demand Planners and Forecasters

      Top Five Tips for New Demand Planners and Forecasters

      Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field!

      Recent Posts

      • Top Five Tips for New Demand Planners and ForecastersTop Five Tips for New Demand Planners and Forecasters
        Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field! […]
      • Dynamics Community Summit eventSmart Software to Present at Community Summit North America
        Smart Software's Channel Sales Director and Enterprise Solution Engineer, to present three sessions at this year’s Microsoft Dynamics Community Summit North America event in Orlando, FL. . […]

        Redefine Exceptions and Fine Tune Planning to Address Uncertainty

        The Smart Forecaster

         Pursuing best practices in demand planning,

        forecasting and inventory optimization

        Inventory Planning from the Perspective of a Physicist

        In a perfect world, Just in Time (JIT) would be the appropriate solution for inventory management. If you can exactly predict what you need and where you need it and your suppliers can get what you need without delay, then you do not need to maintain much inventory locally.  But as the saying goes from famous pugilist Mike Tyson, “everyone has a plan until they get punched in the mouth.” And the latest punch in the mouth for the global supply chain was last week’s Suez Canal Blockage that held up $9.6B in trade costing an estimated $6.7M per minute[1].  Disruptions from these and similar events should be modeled and accounted for in your planning.

        The assumption that you can exactly predict the future was apparent in Isaac Newton’s laws. Since the 1920’s with the introduction of quantum physics, uncertainty became fundamental to our understanding of nature. Uncertainty is built into fundamental reality.  So too should it be built into Supply and Demand Planning processes.  Yet too often, black swan events such as the Suez Canal blockage are often thought of as anomalies and as a result, discounted when planning. It is not enough to look back in hindsight and proclaim that it should have been expected. Something needs to be done about addressing the occurrence of other such events in the future and planning stocking levels accordingly.

        We must move beyond the “thin tailed distribution” thinking where extreme outcomes are discounted and plan for “fat tails.”  So how do we execute a real-world JIT plan when it comes to planning inventory? To do this, the first step is to estimate the realistic lead time to obtain an item. However, estimation is difficult due to lead time uncertainty.  Using actual supplier lead times in your company database and external data, you can develop a distribution of possible future lead times and demands within those lead times. Probabilistic forecasting will allow you to account for disruptions and unusual events by not limiting your estimates to what has been observed solely on your own short-term demand and lead time data.  You’ll be able to generate possible outcomes with associated probabilities for each occurrence.

        Once you have an estimate of the lead time and demand distribution, you can then specify the service level you need to have for that part. Using solutions such as Smart Inventory Optimization (SIO), you will be able confidently stock based on the targeted stock-out risk with minimal inventory carrying cost. You may also consider letting the solution prescribe optimal service level targets by assessing the costs of additional inventory vs. cost of stockout.

        Finally, as I have already noted, we need to accept that we can never eliminate all uncertainty. As a physicist, I have always been intrigued by the fact that, even at the most basic levels of reality as we understand it today, there is still uncertainty. Albert Einstein believed in certainty (determinism) in physical law.  If he were an inventory manager, he might have argued for JIT because he believed physical laws should allow perfect predictability. He famously said, “God does not play with dice.”  Or could it be possible that the universe we exist in was a “black swan” event in a prior “multi-verse” that produced a particular kind of universe that allowed us to exist.

        In inventory planning, as in science, we cannot escape the reality of uncertainty and the impact of unusual events.  We must plan accordingly.

         

        [1] https://www.bbc.com/news/business-56559073#:~:text=Looking%20at%20the%20bigger%20picture,0.2%20to%200.4%20percentage%20points.

        Leave a Comment

        Related Posts

        Call an Audible to Proactively Counter Supply Chain Noise

        Call an Audible to Proactively Counter Supply Chain Noise

        You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

        Recent Posts

        • Top Five Tips for New Demand Planners and ForecastersTop Five Tips for New Demand Planners and Forecasters
          Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field! […]
        • Dynamics Community Summit eventSmart Software to Present at Community Summit North America
          Smart Software's Channel Sales Director and Enterprise Solution Engineer, to present three sessions at this year’s Microsoft Dynamics Community Summit North America event in Orlando, FL. . […]

          Coping with Surging Demand During the Rebound

          The Smart Forecaster

           Pursuing best practices in demand planning,

          forecasting and inventory optimization

          Many of our customers that saw demand dry up during the pandemic are now seeing demand return.  Some are seeing a significant demand surge. Other customers in critical industries like plastics, biotech, semiconductors and electronics saw demand surges starting as far back as last April. For suggestions about how to cope with these situations, please read on.

          Surging demand usually creates two problems: inability to fill orders and inability to get replenishment due to supplier overload. This situation requires changes in the way you use your advanced planning software. Here are three tips to help you cope.

           

          Tip #1: Narrow your temporal focus

           

          In normal times (remember those?), more data implied better results. Nowadays, old data poison your calculations, since they represent conditions that no longer apply. You should base forecasts and other calculations on data from the current situation. Where to cut off past data may be obvious from a plot of the data, or you may decide to set a “reasonable” cutoff date based on a consensus of colleagues.  Smart Software has developed machine learning algorithms that automatically identify how much historical data should be optimally fed to the forecast model. Be on the lookout for these enhancements to the software that will be rolling out soon. In the meantime, conduct accuracy tests using held-out actuals using different historical start dates.  Smart’s forecast vs. actual feature will support this automatically.

          Smart Demand Planner forecasts vs. actual report

           

          Tip #2: Increase your planning tempo

           

          When operations are stable, you can set your inventory policies and trust them to be appropriate for a long time. When times are turbulent, it is important to increase the frequency of your planning cycles to keep old policy settings from drifting too far away from optimality.  More frequent recalibration of your stocking policies and forecasts means that you’ll be quicker to catch trends that will surprise your competition and always keep you steps ahead.  With software capable of automatically selecting optimal values, all that work can be done in one shot by the software. You should review those changes and possibly tweak them, but it makes sense to let the software do the bulk of the work.

           

          Tip #3: Do more What-If planning

           

          In turbulent times, you might expect even more turbulence in the future. Using your software for what-if planning helps you prepare for changes that may be coming. For example, suppose you’ve been in touch with a key supplier who hints that they may be raising prices or may have to slip their delivery schedules. By feeding the software different inputs, you can do contingency planning. If prices go up, you can see how responding by changing order quantities would impact your inventory operating costs and inventory investment. If lead times go up, you can see what the impact would be on item availability. This foreknowledge helps you figure out what your counter-moves would be before the crisis hits.

          If there ever was a time when we could cruise on automatic pilot, it’s in the rear-view mirror. Your organization, coping with explosive growth, has many challenges. Old answers are obsolete; new answers have to come from somewhere, fast. Advanced software that leverages probabilistic forecasting can help, along with changes in planning processes.

           

          Leave a Comment

          Related Posts

          Call an Audible to Proactively Counter Supply Chain Noise

          Call an Audible to Proactively Counter Supply Chain Noise

          You know the situation: You work out the best way to manage each inventory item by computing the proper reorder points and replenishment targets, then average demand increases or decreases, or demand volatility changes, or suppliers’ lead times change, or your own costs change.

          Recent Posts

          • Top Five Tips for New Demand Planners and ForecastersTop Five Tips for New Demand Planners and Forecasters
            Good forecasting can make a big difference to your company’s performance, whether you are forecasting to support sales, marketing, production, inventory, or finance. This blog is aimed primarily at those fortunate individuals who are about to start this adventure. Welcome to the field! […]
          • Dynamics Community Summit eventSmart Software to Present at Community Summit North America
            Smart Software's Channel Sales Director and Enterprise Solution Engineer, to present three sessions at this year’s Microsoft Dynamics Community Summit North America event in Orlando, FL. . […]