De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Serviceniveau is een belangrijke prestatie-indicator voor bedrijven die een hoge prioriteit geven aan het voldoen aan de vraag van de klant. Serviceniveau wordt gedefinieerd als de waarschijnlijkheid dat een doorlooptijd van aanvulling wordt overleefd zonder dat er voorraad wordt aangelegd.

Best practice voor voorraadbeheer begint met het stellen van serviceniveaudoelen en berekent vervolgens bestelpunten (ook wel Mins genoemd) om die doelen te bereiken. Deze berekeningen moeten rekening houden met variabiliteit in zowel de vraag als de doorlooptijd voor aanvulling. Er zijn veel softwaresystemen beschikbaar om deze berekeningen uit te voeren. Als alles goed gaat, komt het bereikte serviceniveau heel dicht in de buurt van het beoogde serviceniveau. Helaas gaapt er vaak een pijnlijke kloof tussen die twee.

Een reden voor de kloof zijn onrealistische vraagmodellen. In veel gevallen gebruikt software voor het berekenen van bestelpunten formules uit het handboek die zijn gebaseerd op wiskundige aannames die analyse eenvoudig maken ten koste van realisme. Veel "Inventory 101"-handboeken gebruiken formules die veronderstellen dat de vraag een normale verdeling heeft (ook wel de "klokvormige curve" genoemd) voor afgewerkte goederen en de Poisson-verdeling voor reserveonderdelen. Gelukkig zijn er nu voorraadoptimalisatie- en prognosesystemen die de werkelijke vraaggeschiedenis van de voorraaditems verwerken met behulp van probabilistische prognoses. Deze oplossingen berekenen een nauwkeurige schatting van de verdeling – niet een geïdealiseerde versie. Bekijk voor meer informatie deze eerdere blog op probabilistische voorspelling:

Maar er is een tweede bron van fouten in leerboeken die onzichtbaar opereert in veel inventarissoftwarepakketten: "onderschrijding".

Berekeningen van bestelpunten gaan er bijna altijd van uit dat stockouts ontstaan wanneer de totale vraag tijdens een bevoorradingsinterval het bestelpunt overschrijdt. Stel bijvoorbeeld dat de vraag gemiddeld 1 eenheid per dag is. Als de doorlooptijd 5 dagen is, dan is de gemiddelde doorlooptijdvraag 5 stuks. Het herbestelpunt instellen op 5 eenheden zou ergens in de buurt van 50% een lachwekkend serviceniveau opleveren. Het toevoegen van veiligheidsvoorraad aan de berekening kan resulteren in een bestelpunt van bijvoorbeeld 11 eenheden, wat zou kunnen overeenkomen met een serviceniveau van 95%. Een andere manier om dit te zeggen is dat, beginnend bij een bestelpunt van 11 eenheden, er een kans van 95% zou moeten zijn om de doorlooptijd van 5 dagen te overleven zonder een cumulatieve vraag van meer dan 11 eenheden te ervaren. Theoretisch!

Wat in deze analyse ontbreekt, is het undershoot-fenomeen. Undershoot betekent dat de doorlooptijd niet begint Bij het bestelpunt maar onderstaand het. Onderschrijding gebeurt elke keer dat de vraag die het bestelpunt overschreed, de voorraad naar beneden haalde onderstaand (Niet beneden tot) het bestelpunt. Onderstaande figuur toont suppletiecycli met en zonder onderschrijding. Undershoot plukt uw zak voordat u zelfs maar begint met het gooien van de dobbelstenen. Het misleidt de voorraadprofessional door te denken dat zijn of haar bestelpunten voldoende zijn om hun doelen te bereiken, terwijl de werkelijke prestaties het cijfer niet zullen halen.

Er is maar één situatie waarin onderschrijding geen probleem is: wanneer de vraag altijd nul of één eenheid is. Onderschrijding is dan onmogelijk. Maar in alle andere gevallen zal er zeker tot op zekere hoogte sprake zijn van onderschrijding, en dit kan het serviceniveau dat daadwerkelijk wordt bereikt door een bepaalde keuze van een bestelpunt ernstig ondermijnen. Onze analyses tonen aan dat de omstandigheden die het meest kwetsbaar zijn voor onderschrijdingen een sterk intermitterende en scheve vraag zijn met zeer korte doorlooptijden - de omstandigheden die het meest voorkomen door markttrends.

Wat kunt u doen om uzelf te beschermen tegen het effect van onderschrijding op berekeningen van bestelpunten? Gebruik voorraadoptimalisatie- en prognosesoftware die niet gebonden is aan de aannames uit het oude leerboek en in plaats daarvan automatisch rekening houdt met onderschrijdingen bij het berekenen van het serviceniveau dat wordt geproduceerd door een willekeurig bestelpunt.

Om de Inventory Optimization-oplossing van Smart Software in actie te zien, kunt u zich hieronder registreren om een opgenomen demo te zien:

 

    Uw naam *

    Bedrijfsnaam *

    Werk email *

    Werktelefoon


     

     

    Laat een reactie achter

    gerelateerde berichten

    Verward over AI en Machine Learning?

    Verward over AI en Machine Learning?

    Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

    Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

    Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

    In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

    Hoe u voorraadvereisten kunt voorspellen

    Hoe u voorraadvereisten kunt voorspellen

    Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag.

    recente berichten

    • artificial intelligence ai and machine learning inventory managementVerward over AI en Machine Learning?
      Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • Balans,Concept,Met,Chroom,Ballen,software voor voorraadoptimalisatieHoe u voorraadvereisten kunt voorspellen
      Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag. […]
    • Demand Planning tweelingbroers met prognosetoolsZes best practices voor vraagplanning waar u twee keer over moet nadenken
      Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen. […]
    • Mannelijke magazijnmedewerker met 99 Service Level palletUitleggen wat 'serviceniveau' betekent in uw voorraadoptimalisatiesoftware
      Navigeren door de fijne kneepjes van voorraadaanbevelingen kan vaak leiden tot vragen over de juistheid en betekenis ervan. Een recent onderzoek van een van onze klanten leidde tot een verhelderende discussie over de nuances van serviceniveaus en bestelpunten. Tijdens een teamvergadering hebben we ongebruikelijke hiaten vastgesteld tussen onze Smart-suggested reorder points (ROP) op een 99%-serviceniveau en de huidige ROP van de klant. In dit bericht ontrafelen we het concept van een "99%-serviceniveau" en de implicaties ervan voor voorraadoptimalisatie, waarbij we licht werpen op hoe timing en onmiddellijke voorraadbeschikbaarheid een cruciale rol spelen bij het voldoen aan de verwachtingen van de klant en concurrerend blijven in diverse industrieën. […]

      Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

      • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
        In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
      • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
        In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
      • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
        Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]
      • professionele technicus-ingenieur die reserveonderdelen plant in industriële productiefabriek,Bereid uw reserveonderdelenplanning voor op onverwachte schokken
        In het onvoorspelbare zakenklimaat van vandaag moeten we ons zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken. […]