}

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

De meeste vraagprognoses zijn gedeeltelijk of onvolledig: ze bieden slechts één enkel getal: de meest waarschijnlijke waarde van de toekomstige vraag. Dit wordt een puntvoorspelling genoemd. Gewoonlijk schat de puntvoorspelling de gemiddelde waarde van de toekomstige vraag.

Veel nuttiger is een voorspelling van de volledige waarschijnlijkheidsverdeling van de vraag op elk toekomstig tijdstip. Dit wordt vaker waarschijnlijkheidsvoorspelling genoemd en is veel nuttiger.

Het gemiddelde is niet het antwoord

 

Het enige voordeel van een puntvoorspelling is de eenvoud. Als uw ERP-systeem ook eenvoudig is, vult de puntprognose het ene getal in dat het ERP-systeem nodig heeft om personeelsplanning of inkoop van grondstoffen te doen.

Het nadeel van een puntvoorspelling is dat het te simpel is. Het negeert aanvullende informatie in de vraaggeschiedenis van een artikel die u een vollediger beeld kan geven van hoe de vraag zich zou kunnen ontvouwen: een kansprognose.

Verder gaan dan het gemiddelde: waarschijnlijkheidsvoorspellingen

 

Terwijl de puntprognose beperkte informatie geeft, bijv. "De meest waarschijnlijke vraag volgende maand is 15 eenheden", voegt de kansprognose cruciale informatie toe, bijv. "Er is een kans van 20% dat de vraag meer dan 28 eenheden zal bedragen en een kans van 10% dat het kleiner zijn dan 5 eenheden”.

Met deze informatie kunt u risicobeoordelingen en noodplannen maken. Contingency planning is nodig omdat de kans dat de puntvoorspelling daadwerkelijk klopt meestal maar klein is. Een waarschijnlijkheidsvoorspelling kan ook zeggen: "De kans dat de vraag 15 eenheden is, is slechts 10%, ook al is dit de meest waarschijnlijke waarde." Met andere woorden, er is een kans van 90% dat de puntvoorspelling verkeerd is. Dit soort fouten is geen fout in de prognoseberekeningen: het is de realiteit van het omgaan met vraagvolatiliteit. Het zou beter een "onzekerheid" kunnen worden genoemd dan een "fout".

Een operations manager kan de extra informatie in een kansprognose zowel informeel als formeel gebruiken. Informeel, zelfs als een ERP-systeem een enkelvoudige prognose als invoer vereist, zal een verstandige manager enig idee willen hebben van de risico's die aan die puntvoorspelling zijn verbonden, dwz de foutmarge. Een voorspelling van 15 ± 1 eenheid is dus een stuk veiliger dan een voorspelling van 15 ± 10. Het ± gedeelte is een compressie van een probabilistische voorspelling. Afbeelding 1 hieronder toont de vraaggeschiedenis van een item (rode lijn), puntprognoses voor de komende 12 maanden (groene lijn) en hun foutmarges (cyaankleurige lijnen). De laagste prognose van ongeveer 3.300 eenheden komt in juni uit, maar de werkelijke vraag kan wel 800 eenheden hoger of lager zijn.

Bonus: toepassing op voorraadbeheer

 

Voorraadbeheer vereist dat u de beschikbaarheid van artikelen afzet tegen de voorraadkosten. Het blijkt dat het kennen van de volledige waarschijnlijkheidsverdeling van de vraag over een doorlooptijd van aanvulling essentieel is om bestelpunten (ook wel minuten genoemd) op een rationele, wetenschappelijke basis te bepalen. Figuur 2 toont een waarschijnlijkheidsprognose van de totale vraag gedurende de 33 weken durende aanvultijd voor een bepaald reserveonderdeel. Hoewel de gemiddelde doorlooptijdvraag 3 eenheden is, is de meest waarschijnlijke vraag nul en is een bestelpunt van 14 nodig om ervoor te zorgen dat de kans op voorraad slechts 1% is. Nogmaals, het gemiddelde is niet het antwoord.

Meer weten is altijd beter dan minder weten en de waarschijnlijkheidsvoorspelling geeft net dat beetje extra cruciale informatie. Software kan al meer dan 40 jaar een puntvoorspelling leveren, maar moderne software kan het beter doen en het hele plaatje weergeven.

 

 

Figuur 1: De rode lijn toont de vraaggeschiedenis van een gereed product. De groene lijn toont de puntprognoses voor de komende 12 maanden. De blauwe lijnen geven de foutmarges in de 12-puntsvoorspellingen aan.

 

 

Afbeelding 2: Een probabilistische prognose van de vraag naar een reserveonderdeel gedurende een aanvultijd van 33 weken. De meest waarschijnlijke vraag is nul, de gemiddelde vraag is 3, maar een bestelpunt van 14 eenheden is vereist om slechts 1% kans te hebben dat de voorraad op is.

Laat een reactie achter

gerelateerde berichten

Smart Software kondigt patent van de volgende generatie aan

Smart Software kondigt patent van de volgende generatie aan

Smart Software is verheugd de toekenning van US Patent 11,656,887 aan te kondigen. Het patent leidt “technische oplossingen voor het analyseren van historische vraaggegevens van middelen in een technologieplatform om het beheer van een geautomatiseerd proces in het platform te vergemakkelijken.

Hebben uw statistische prognoses last van het wiggle-effect?

Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

Hoe om te gaan met statistische prognoses van nul

Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

recente berichten

  • What is Inventory Control Planning Management Optimization DictionaryWhat is Inventory Planning? A Brief Dictionary of Inventory-Related Terms
    People involved in the supply chain are likely to have questions about various inventory terms and methods used in their jobs. This note may help by explaining these terms and showing how they relate. […]
  • artificial intelligence ai and machine learning inventory managementVerward over AI en Machine Learning?
    Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn. […]
  • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
    In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
  • Balans,Concept,Met,Chroom,Ballen,software voor voorraadoptimalisatieHoe u voorraadvereisten kunt voorspellen
    Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag. […]
  • Demand Planning tweelingbroers met prognosetoolsZes best practices voor vraagplanning waar u twee keer over moet nadenken
    Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]
    • professionele technicus-ingenieur die reserveonderdelen plant in industriële productiefabriek,Bereid uw reserveonderdelenplanning voor op onverwachte schokken
      In het onvoorspelbare zakenklimaat van vandaag moeten we ons zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken. […]