1. Ingebouwde ERP-functionaliteit is ingebakken in Order Management.
Overweeg wat wordt bedoeld met "vraagbeheer", "vraagplanning" en "voorspelling". Deze voorwaarden impliceren bepaalde standaardfuncties voor samenwerking, statistische analyse en rapportage ter ondersteuning van een professioneel vraagplanningsproces. In de meeste ERP-systemen bestaat 'vraagbeheer' echter uit het uitvoeren van MRP en het afstemmen van vraag en aanbod met als doel het plaatsen van bestellingen, oftewel 'orderbeheer'. Het heeft weinig te maken met vraagplanning, een discreet proces dat gericht is op het ontwikkelen van de best mogelijke voorspellingen van de toekomstige vraag door statistische analyse te combineren met zakelijke kennis van evenementen, promoties en informatie over het verkoopteam. De meeste ERP-systemen bieden weinig statistische mogelijkheden en als ze worden aangeboden, heeft de gebruiker de keuze uit een paar statistische methoden die hij handmatig moet toepassen vanuit een vervolgkeuzelijst of zelf moet programmeren. Het is ingebakken in het orderbeheerproces, waardoor de gebruiker mogelijk kan zien hoe de prognose van invloed kan zijn op de voorraad. Er is echter geen enkele mogelijkheid om de prognose te beheren, de kwaliteit van de prognose te verbeteren, beheeronderdrukkingen toe te passen en te volgen, samen te werken, de nauwkeurigheid van de prognose te meten en bij te houden “voorspelbare toegevoegde waarde.”
2. ERP-planningsmethoden zijn vaak gebaseerd op simplistische vuistregels.
ERP-systemen bieden altijd min, max, veiligheidsvoorraad, bestelpunt, bestelhoeveelheid en prognoses om bevoorradingsbeslissingen te stimuleren. Maar hoe zit het met de onderliggende methoden die worden gebruikt om deze belangrijke drijfveren te berekenen? In bijna alle gevallen zijn de aangeboden methoden niets meer dan vuistregel benaderingen die geen rekening houden met de variabiliteit van vraag of leverancier. Sommige bieden wel "targeting op serviceniveau", maar vertrouwen ten onrechte op de aanname van een normale verdeling ("klokvormige curve"), wat betekent dat de vereiste veiligheidsvoorraden en bestelpunten die door het systeem worden aanbevolen om het serviceniveaudoel te bereiken, vlak zullen zijn verkeerd uit als uw gegevens niet passen in het ideale theoretische model, wat vaak erg onrealistisch is. Dergelijke te vereenvoudigde berekeningen doen meestal meer kwaad dan goed.
3. Waarschijnlijk gebruik je spreadsheets nog minimaal 2 jaar na aanschaf.
Als u een nieuwe ERP-oplossing zou implementeren, zouden uw oude gegevens meestal vastlopen. Alle systeemeigen ERP-functionaliteiten voor prognoses, het instellen van voorraadbeleid zoals min/max, enz. kunnen dus niet worden gebruikt en u zult gedwongen worden om gedurende ten minste twee jaar terug te grijpen op omslachtige en foutgevoelige spreadsheets (een jaar om te implementeren). op zijn vroegst en nog een jaar om ten minste 12 maanden geschiedenis te verzamelen). Nauwelijks een digitale transformatie. Het gebruik van een best-of-breed oplossing voorkomt dit probleem. U kunt gegevens uit uw oude ERP-systeem laden en uw ERP-implementatie niet verstoren. Dit betekent dat u op dag 1 van ERP-go-live uw nieuwe ERP-systeem kunt vullen met betere invoer voor vraagprognoses, veiligheidsvoorraden, bestelpunten en min/max-instellingen.
4. ERP is niet ontworpen om alles te doen
De "Doe alles in ERP/One-Vendor"-mentaliteit was een marketingboodschap die werd gepromoot door ERP-bedrijven, met name SAP, om u, de klant, 100% van uw IT-budget bij hen te laten uitgeven. Die marketingboodschap is door analistengroepen, IT-firma's en systeemintegrators aan de gebruikers nagepraat, waarbij rationele stemmen werden overstemd die vroegen: "Waarom wil je zo afhankelijk zijn van één bedrijf dat je inferieure technologie voor prognoses en voorraadplanning gebruikt?" ” Het enorme aantal IT-storingen en de enorme implementatiekosten hebben ertoe geleid dat veel bedrijven hun benadering van ERP hebben heroverwogen. Met de komst van gespecialiseerde planning-apps die in de cloud zijn geboren zonder IT-footprint, is de juiste keuze een "dunne" ERP gericht op de basisprincipes - boekhouding, orderbeheer, financiën - maar ondersteund door gespecialiseerde planning-apps.
De expertise van ERP-consultants ligt in hoe hun systeem is ontworpen om bepaalde bedrijfsprocessen te automatiseren en hoe het systeem kan worden geconfigureerd of aangepast. Hun adviseurs zijn geen specialisten in de juiste aanpak van voorraadplanning, prognoses en voorraadplanning. Dus als u probeert te begrijpen welke aanpak voor vraagplanning geschikt is voor uw bedrijf, hoe moet u dan goed bufferen (bijv. "Moeten we min/max of op prognoses gebaseerde aanvulling doen?" "Moeten we voorspellingsmethode X gebruiken?"), zul je het over het algemeen niet vinden en als je dat wel doet, zal die bron vrij dun verspreid zijn.
gerelateerde berichten
12 Causes of Overstocking and Practical Solutions
Managing inventory effectively is critical for maintaining a healthy balance sheet and ensuring that resources are optimally allocated. Here is an in-depth exploration of the main causes of overstocking, their implications, and possible solutions.
FAQ: Slimme IP&O voor beter voorraadbeheer.
Effective supply chain and inventory management are essential for achieving operational efficiency and customer satisfaction. This blog provides clear and concise answers to some basic and other common questions from our Smart IP&O customers, offering practical insights to overcome typical challenges and enhance your inventory management practices. Focusing on these key areas, we help you transform complex inventory issues into strategic, manageable actions that reduce costs and improve overall performance with Smart IP&O.
Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten.