De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Voorraadbeheer vereist dat leidinggevenden concurrerende doelen tegen elkaar afwegen: hoge productbeschikbaarheid versus lage investering in voorraad. Leidinggevenden vinden dit evenwicht door beschikbaarheidsdoelen en budgetbeperkingen te stellen. Vervolgens vertalen supply chain-professionals deze 'opdrachtgeversintenties' in gedetailleerde specificaties over punten opnieuw ordenen en bestel hoeveelheden.

Een spannende race tussen vraag en aanbod

 

Laten we ons concentreren op bestelpunten (ook bekend als minuten). Ze werken als volgt. Naarmate de voorhanden voorraad afneemt als reactie op de vraag, daalt deze uiteindelijk tot of onder een triggerwaarde, het bestelpunt of min. Op dat moment is het alsof er een pistool afgaat om een race tussen vraag en aanbod te starten. Er wordt een aanvullingsopdracht verzonden om het artikel opnieuw te bevoorraden, maar er is een aanvulling Lead time, dus de herbevoorrading is niet onmiddellijk. Terwijl uw systeem wacht op bevoorrading, blijft de vraag naar de beschikbare voorraad afnemen. Het is slecht nieuws als de vraag de race wint, want dan ben je niet in staat om te bieden wat iemand vraagt. Vervolgens krijgen ze het van een concurrent of worden ze nabesteld en ontevreden: hoe dan ook, bevoorrading is een slecht resultaat voor u en uw klant.

Het risico van bevoorrading wordt beheerst door de keuze van de bestelpunten van uw personeel. Als ze te hoog zijn ingesteld, zijn stock-outs zeldzaam, maar is de voorraad opgeblazen. Stel ze te laag in en stock-outs zijn er in overvloed. Dus hoe moeten de bestelpunten worden ingesteld?

Dwaze opvolging vermijden

 

Verschillende factoren bepalen het voorraadrisico. Elk artikel in uw inventaris heeft zijn eigen vraaggeschiedenis en doorlooptijd. Samen met de door u gekozen beschikbaarheidsdoelen bepalen deze factoren de beste keuze voor een bestelpunt. Maar de relaties zijn statistisch en vereisen een goede analyse om uit te werken. Software voor voorraadoptimalisatie kan het juiste bestelpunt berekenen voor elk van de tienduizenden artikelen. Maar in plaats van te vertrouwen op een goede analyse, vallen veel bedrijven terug op simpele vuistregels of gewoon “doen wat we altijd doen”.

In plaats van de juiste wiskunde te gebruiken, vertrouwen bedrijven vaak op vuistregels die hen slecht van dienst zijn. Hier zijn enkele voorbeelden in volgorde van meest voorkomend tot minst voorkomend.

1) Veelvouden van de gemiddelde vraag

 

Hervolgpunten instellen op een (willekeurig) veelvoud van gemiddelde vraag begint te vertrouwen op feitelijke feiten. Maar het negeert het belangrijkste kenmerk van de vraag dat het risico op voorraaduitval veroorzaakt: variabiliteit in de vraag. Twee artikelen met dezelfde gemiddelde vraag maar zeer verschillende niveaus van variabiliteit zullen zeer verschillende bestelpunten vereisen om hetzelfde lage risico op voorraaduitval te verzekeren. (Zie afbeelding 1)

2) Onderbuikgevoel

 

Sommige bedrijven hebben zichzelf gestyled supply chain goeroes. Zelfs als ze eigenlijk Jedi-meesters zijn, is het onmogelijk om tienduizenden items bij te houden waarvan de bestelpunten regelmatig moeten worden herzien. En als de logica achter de besluitvorming verborgen zit in een moeilijk te gebruiken spreadsheet waarvan alleen zij weten hoe ze die moeten gebruiken, loopt het bedrijf het risico het inventarisatieplan niet uit te voeren zonder die ene persoon – een risicovol voorstel.

3) Gemiddelde vraag + een veelvoud van vraagvariabiliteit

 

Deze benadering wordt in veel "Inventory 101" -cursussen onderwezen. Maar het veronderstelt impliciet enkele feiten over de vraag die heel vaak niet waar zijn: dat de vraag een normale ("klokvormige") verdeling heeft en dat de vraag in de ene periode geen verband houdt met de vraag in de voorgaande tijdsperiode(n). Veronderstellingen van onafhankelijkheid en vertrouwen op normale distributiemodellen zijn gewoon niet voldoende.

4) Kinderliedjes

 

Helemaal niet de norm, vandaar dat we als laatste op de lijst staan, maar we hoorden van een bedrijf dat één simpele regel hanteerde voor alle artikelen: "Als het er vier zijn, bestel dan meer". Het is gek om te geloven dat één regel te allen tijde op alle items van toepassing is. Maar het rijmt tenminste.

Uw mensen kunnen beter doen dan te vertrouwen op een van deze benaderingen. Weet u of uw bedrijf er een gebruikt?

Het goed doen

 

De juiste manier om herordeningspunten in te stellen maakt gebruik van de instrumenten van de waarschijnlijkheidstheorie. De details zijn afhankelijk van of u afgewerkte goederen of reserveonderdelen verkoopt. Reserveonderdelen zijn meestal moeilijker te beheren omdat ze eigenzinnige vraagpatronen hebben: hoog onderbreking (veel nul eisen), hoog scheefheid (veel kleine eisen maar ook met wat kanjers), en auto-correlatie ("feest of hongersnood" gedrag). Modern Puntsoftware opnieuw bestellen houdt rekening met deze eigenaardigheden om bestelpunten in te stellen die het gewenste niveau van artikelbeschikbaarheid verzekeren. Belangrijk is dat ze uw mensen ook expliciete afwegingscurven laten zien, zodat ze de balans kunnen vinden die u wilt - op item-per-locatieniveau - tussen voorraadrisico en voorraadinvestering.

Voorraad is een belangrijke post op de balans en heeft aandacht op hoog niveau nodig. Bij veel fabrikanten kunnen serviceonderdelen tot de helft van de omzet vertegenwoordigen. Moderne software laat de C-Suite verder gaan dan onvolledige wiskunde en andere ontoereikende benaderingen voor voorraadbeheer.

 

 

Afbeelding 1: Twee even belangrijke artikelen met dezelfde gemiddelde vraag krijgen hetzelfde voorraadbeleid toegewezen dat het Min (bestelpunt) bepaalt als 2 x de gemiddelde doorlooptijdvraag. Ondanks "hetzelfde" voorraadbeleid variëren de serviceprestaties aanzienlijk, waarbij het stabiele artikel A te kampen heeft met overvoorraden en het vluchtige artikel B met een voorraadtekort.

Laat een reactie achter

gerelateerde berichten

Je moet samenwerken met de algoritmen

Je moet samenwerken met de algoritmen

This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software.

Beantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken

Beantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken

Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie.

Elk voorspellingsmodel is goed waarvoor het is ontworpen

Elk voorspellingsmodel is goed waarvoor het is ontworpen

Met zoveel hype rond nieuwe Machine Learning (ML) en probabilistische voorspellingsmethoden lijken de traditionele “extrapolatieve” of “tijdreeksen” statistische voorspellingsmethoden de koude schouder te krijgen. Het is echter de moeite waard om te onthouden dat deze traditionele technieken (zoals enkele en dubbele exponentiële afvlakking, lineaire en eenvoudige voortschrijdende middeling, en Winters-modellen voor seizoensitems) vaak behoorlijk goed werken voor gegevens met een groter volume. Elke methode is goed voor waarvoor deze is ontworpen. Pas ze allemaal op de juiste manier toe, bijvoorbeeld: neem geen mes mee naar een vuurgevecht en gebruik geen drilboor als een eenvoudige handhamer voldoende is.

recente berichten

  • Direct naar het brein van de baas - InventarisanalyseRechtstreeks naar het brein van de baas – voorraadanalyse en rapportage
    In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies. […]
  • U moet samenwerken met de algoritmen voor voorraadbeheerJe moet samenwerken met de algoritmen
    This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software. […]
  • Heroverweging van de nauwkeurigheid van prognoses, een verschuiving van nauwkeurigheid naar foutstatistiekenBeantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken
    Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie. […]
  • Het gebruik van belangrijke prestatievoorspellingen om het voorraadbeleid te plannen
    Ik kan me niet voorstellen dat ik een voorraadplanner ben op het gebied van reserveonderdelen, distributie of productie en dat ik veiligheidsvoorraden, bestelpunten en bestelsuggesties moet creëren zonder gebruik te maken van belangrijke prestatievoorspellingen van serviceniveaus, opvullingspercentages en voorraadkosten. […]
  • Elk voorspellingsmodel is goed waarvoor het is ontworpenElk voorspellingsmodel is goed waarvoor het is ontworpen
    Met zoveel hype rond nieuwe Machine Learning (ML) en probabilistische voorspellingsmethoden lijken de traditionele “extrapolatieve” of “tijdreeksen” statistische voorspellingsmethoden de koude schouder te krijgen. Het is echter de moeite waard om te onthouden dat deze traditionele technieken (zoals enkele en dubbele exponentiële afvlakking, lineaire en eenvoudige voortschrijdende middeling, en Winters-modellen voor seizoensitems) vaak behoorlijk goed werken voor gegevens met een groter volume. Elke methode is goed voor waarvoor deze is ontworpen. Pas ze allemaal op de juiste manier toe, bijvoorbeeld: neem geen mes mee naar een vuurgevecht en gebruik geen drilboor als een eenvoudige handhamer voldoende is. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]