Quantum Inventory Theory?

The Smart Forecaster

Pursuing best practices in demand planning, forecasting and inventory optimization

Physicists like my Smart Software co-founder, Dr. Nelson Hartunian, tell us civilians that everything is different when we drill down to the tiniest level of the world. Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management.

Consider quantum superposition. Briefly, superposition means any quantum entity can be in two states at once. Schrödinger’s cat is the most famous illustration of this idea. But how many of you readers are also in a state of superposition? Don’t you find yourself being a manager of a team yet a member of your supervisor’s team, a trouble-shooter yet also a forecasting expert or an inventory optimizer and…? And doesn’t all this make you sometimes feel, like that cat, that you are simultaneously both dead and alive? Modern software can ease some of this burden by automating the tasks of demand planning and inventory optimization. The rest is up to you.

A second quantum analog is entanglement. Briefly, entanglement is the linkage between two elements of a system. They can be light years apart, yet changing one part of an entangled system will instantaneously change the other part. This bugged Albert Einstein, who derided it as “spooky action as a distance.” In our regular world, demand planning and inventory optimization are entangled, since the process of inventory optimization sits on top of the process of demand forecasting. Modern software links the two in an efficient interface.

Finally, the quantum foam – one of my favorite ideas. As I understand it, quantum foam is a substitute for empty space: there is no empty space, rather a constant bubbling of “vacuum energy” accompanied by a flux of “virtual particles” being born out of nothing and then disappearing back into nothing. In the supply chain world, the analogs of virtual particles are customer orders. Often it seems that they pop up with no warning out of thin air, and sometimes they disappear by cancellation in an equally random and mysterious process. This kind of demand fluctuation is the basis for all the theory of inventory control. Modern software therefore begins with probability models of customer demand. Those models then have implications for such tangible quantities as safety stocks, reorder points, and order quantities.

Does it really help demand planners and inventory managers to think about these ideas from quantum physics? Well, it’s a bit of fun to see the analogies to our regular world of work. And they do remind us of more macroscopic matters: the basic concepts of the need to deal with more than one task simultaneously, the linkage between forecasting and inventory management, and randomness as the fundamental feature of the supply chain.

 

 

 

Leave a Comment

Related Posts

Quantum Inventory Theory?

Quantum Inventory Theory?

Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management.

Stop Leaking Money with Manual Inventory Controls

Stop Leaking Money with Manual Inventory Controls

An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock.

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

Consider what is meant by “demand management”, “demand planning”, and “forecasting”. These terms imply certain standard functionality for collaboration, statistical analysis, and reporting to support a professional demand planning process.  However, in most ERP systems, “demand management” running MRP and reconciling demand and supply for the purpose of placing orders

Recent Posts

  • Quantum atom software illustrationQuantum Inventory Theory?
    Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management. […]
  • Stop Leaking Money with Manual Inventory Controls
    An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock. […]
Stop Leaking Money with Manual Inventory Controls

The Smart Forecaster

Pursuing best practices in demand planning, forecasting and inventory optimization

An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items.

In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock.

In the meantime, however, your company’s accumulated inventory control policies keep on doing what they do, even if they are leaking money. A good manager will make time to listen to the “background noise” even when he or she hears loud crashing in the warehouse.

Consider the current settings for your inventory control parameters (e.g., reorder points and order quantities). It’s easy to think of these as “fire and forget” decisions. But these settings usually accumulate over time and end up comprising a mish-mash of forgotten judgement calls that may be misaligned with your current operating environment. Many factors can drift away from their previous levels, such as supplier lead times, ordering costs, or average item demand. These changes can force invisible tradeoffs that are not to your best advantage.

It’s wise to revisit these control settings now and then to see if it’s possible to align your day-to-day operations with current realities. Of course, it would be infeasible for a busy manager to manually calculate the effects of changing the control settings on, say, 10,000 items. But that’s what modern inventory optimization and demand planning software is for: making large scale analytical tasks feasible. Such software will allow you to automatically process new information and compute adjustments at scale. The result will be easy wins – many of which would otherwise go unrealized.  And continuously saving a little here and there adds up to significant dollars when you are managing thousands of items. 

Consider this example. Company A uses a periodic review inventory system. Every 30 days, they check on-hand inventory for all their items and decide how much replenishment stock to order. Each of their 10,000 items has a specified Order-Up-To Level that determines the size of their replenishment orders.

For instance, suppose Item 1234 has an Order-Up-To Level of 74, determined by factoring in the average item demand of 1.0 units per day, an average replenishment lead time of 8 days, and a target fill rate of 90% for this item. The choice of 74 as the Order-Up-To Level lets Company A meet its 90% fill rate target for Item 1234, but it also results in an average on hand inventory level of 40 units. At $1,500 per unit, this item alone represents $45,000 of inventory investment.

Now supposed that average item demand were to drift up from 1.0 to 1.2 units/day. Without anyone noticing, the fill rate for Item 1234 would drop to 82%!

Now suppose demand were to shift in the other direction and drift down to 0.8 units/day. As with the increase in average demand from 1.0 to 1.2 units/day, kind of change is difficult to see when looking at a plot (see Figure 1) but can have a significant operational impact. In this case, the fill rate would zoom to a generous 96% but on hand inventory would also zoom: from 40 units to 46. Those six extra units would represent $9,000 in excess inventory.

Figure 1: Samples of daily demand with two different average values.  The difference in demand is unnoticeable to the naked eye but if not accounted for will have a large operational impact on inventory spend and service levels

Now imagine similar small shifts happening unnoticed across a full fleet of 10,000 inventory items. The total financial impact of all such shifts would be sufficient to get onto the radar of any CFO.  Trying to keep on top of this turbulence would be impossible if done manually but modern inventory optimization software could calculate the proper adjustments automatically as frequently as your company can handle, even daily helping you realize substantial improvements in service levels, inventory efficiency, while lowering stockout and holding costs!

 

Leave a Comment

Related Posts

Quantum Inventory Theory?

Quantum Inventory Theory?

Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management.

Stop Leaking Money with Manual Inventory Controls

Stop Leaking Money with Manual Inventory Controls

An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock.

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

Consider what is meant by “demand management”, “demand planning”, and “forecasting”. These terms imply certain standard functionality for collaboration, statistical analysis, and reporting to support a professional demand planning process.  However, in most ERP systems, “demand management” running MRP and reconciling demand and supply for the purpose of placing orders

Recent Posts

  • Quantum atom software illustrationQuantum Inventory Theory?
    Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management. […]
  • Stop Leaking Money with Manual Inventory Controls
    An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock. […]
5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

The Smart Forecaster

Pursuing best practices in demand planning, forecasting and inventory optimization

 

1. Built-in ERP functionality is baked into Order Management.

Consider what is meant by “demand management”, “demand planning”, and “forecasting”. These terms imply certain standard functionality for collaboration, statistical analysis, and reporting to support a professional demand planning process.  However, in most ERP systems, “demand management” consists of executing MRP and reconciling demand and supply for the purpose of placing orders, i.e., “order management.” It has very little to do with demand planning which is discrete process focused on developing the best possible predictions of future demand by combining statistical analysis with business knowledge of events, promotions, and sales force intelligence.   Most ERP systems offer little statistical capability and, when offered, the user is left with a choice of a few statistical methods that they either have to apply manually from a drop-down list or program themselves. It’s baked into the order management process enabling the user to possibly how the forecast might impact inventory.  However, there isn’t any ability to manage the forecast, improve the quality of the forecast, apply and track management overrides, collaborate, measure forecast accuracy, and track “forecast value add.” 

2. ERP planning methods are often based on simplistic rules of thumb.

ERP systems will always offer min, max, safety stock, reorder point, reorder quantity, and forecasts to drive replenishment decisions.  But what about the underlying methods used to calculate these important drivers?   In nearly every case, the methods provided are nothing more than rule-of-thumb approaches that don’t account for demand or supplier variability.  Some do offer “service level targeting” but mistakenly rely on the assumption of a Normal distribution (“bell-shaped curve”) which means the required safety stocks and reorder points recommended by the system to achieve the service level target are going to be flat out wrong if your data doesn’t fit the ideal theoretical model, which is often gravely unrealistic.  Such over-simplified calculations tend to do more harm than good.  

3. You’ll probably still use spreadsheets for at least 2 years after purchase.

Most often, if you were to implement a new ERP solution, your old data would be stranded.  So, any native ERP functionality for forecasting, setting stocking policy such as Min/Max, etc., cannot be used, and you will be forced to revert back to cumbersome and error-prone spreadsheets for at least two years (one year to implement at earliest and another year to collect at least 12 months of history).  Hardly a digital transformation.  Using a best-of-breed solution avoids this problem.  You can load data from your legacy ERP system and not disrupt your ERP deployment.  This means that on Day 1 of ERP go-live you can populate your new ERP system with better inputs for demand forecasts, safety stocks, reorder points, and Min/Max settings.

4. ERP isn’t designed to do everything

The “Do everything in ERP/One-Vendor” mindset was a marketing message promoted by ERP firms, particularly Oracle and SAP, to get you, the customer, to spend 100% of your IT budget with them.  That marketing message has been parroted back to users by analyst groups, IT firms, and systems integrators, drowning out rational voices who asked “Why do you want to be so dependent on one firm to the point of using inferior forecasting and inventory planning technology?”  The sheer number of IT failures and huge implementation costs have caused many companies to rethink their approach to ERP.  With the advent of specialized planning apps born in the cloud with no IT footprint, the way to go is a “thin” ERP focused on the fundamentals – accounting, order management, financials – but supported by specialized planning apps.   To learn more about this shift in thinking, google Shaun Snapp of Brightworks Research who has covered this topic at length in his research. 

The expertise of ERP consultant’s lies in how their system is designed to automate certain business processes and how the system can be configured or customized.   Their consultants are not specialists in on proper approaches to planning stock, forecasting, and inventory planning.  So if you are trying to understand what demand planning approach is right for your business, how should you buffer properly, (e.g., “Should we do Min/Max or forecast-based replenishment?” “Should we use forecasting method X?”), you generally aren’t going to find it and if you do that resource will be spread quite thin. 

5. App Stores are for Apple and Android

Maybe your ERP vendor has an app store or marketplace with hundreds of certified add-on solutions.  Sounds great: so many different solutions work with your ERP system.   So why worry about how to set stocking targets, do demand planning and forecasting, etc., during the initial ERP selection?  You can just figure it out later because the ERP vendor has it covered with a certified app in the app store. Having a certified app simply means certain data can be shared between systems but it doesn’t certify anything else, namely the fit for your business. Partner with an ERP provider (check out Epicor ERP) that can clearly articulate what each partner app is designed to support, has clear reasons for offering their partner solutions, and is standing behind the partner solution contractually.  In fact, most market place apps are purchased separately, not on your ERP provider’s paper, and the ERP vendor won’t bear any responsibility if it doesn’t work out.  In fact, language that is front and center makes this point clear.  Here’s an example: “ABC ERP Company does not warrant third-party software applications and has no responsibility or liability of any kind for the third-party software, solutions, services, and training listed on the site.”

 

 

Leave a Comment

Related Posts

Quantum Inventory Theory?

Quantum Inventory Theory?

Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management.

Stop Leaking Money with Manual Inventory Controls

Stop Leaking Money with Manual Inventory Controls

An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock.

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

Consider what is meant by “demand management”, “demand planning”, and “forecasting”. These terms imply certain standard functionality for collaboration, statistical analysis, and reporting to support a professional demand planning process.  However, in most ERP systems, “demand management” running MRP and reconciling demand and supply for the purpose of placing orders

Recent Posts

  • Quantum atom software illustrationQuantum Inventory Theory?
    Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management. […]
  • Stop Leaking Money with Manual Inventory Controls
    An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock. […]
The 3 Types of Supply Chain Analytics

The Smart Forecaster

Pursuing best practices in demand planning, forecasting and inventory optimization

There’s a stale old joke: “There are two types of people – those who believe there are two types of people, and those who don’t.” We can modify that joke: “There are two types of people – those who know there are three types of supply chain analytics, and those who haven’t yet read this blog.”

The three types of supply chain analytics are “descriptive”, “predictive”, and “prescriptive.” Each plays a different role in helping you manage your inventory. Modern supply chain software lets you exploit all three.

Descriptive Analytics

Descriptive Analytics are the stuff of dashboards. They tell you “what’s happenin’ now.” Included in this category are such summary numbers as dollars currently invested in inventory, current customer service level and fill rate, and average supplier lead times. These statistics are useful for keeping track of your operations, especially when you track changes in them from month to month. You will rely on them every day. They require accurate corporate databases, processed statistically.

Predictive Analytics

Predictive Analytics most commonly manifest as forecasts of demand, often broken down by product and location and sometimes also by customer. These statistics provide early warning so you can gear up production, staffing and raw material procurement to satisfy demand. They also provide predictions of the effect of changes in operating policies, e.g., what happens if we increase our order quantity for Product X from 20 to 25 units? You might rely on Predictive Analytics periodically, perhaps weekly or monthly, when you look up from what’s happening now to see what will happen next. Predictive Analytics uses Descriptive Analytics as a foundation but adds more capability. Predictive Analytics for demand forecasting requires advanced statistical processing to detect and estimate such features of product demand as trend, seasonality and regime change.  Predictive Analytics for inventory management uses forecasts of demand as inputs into models of the operation of inventory policies, which in turn provide estimates of key performance metrics such as service levels, fill rates, and operating costs.

Prescriptive Analytics

Prescriptive Analytics are not about what is happening now, or what will happen next, but about what you should do next, i.e., they recommend decisions aimed at maximizing inventory system performance. You might rely on Prescriptive Analytics to best posture your entire inventory policy. Prescriptive Analytics uses Predictive Analytics as a foundation then adds optimization capability. For instance, Prescriptive Analytics software can automatically work out the best choices for future values of Min’s and Max’s for thousands of inventory items. Here, “best” might mean the values of Min and Max for each item that minimize operating cost (the sum of holding, ordering, and shortage costs) while maintaining a 90% floor on item fill rate.

Example

The figure below shows how supply chain analytics can help the inventory manager. The columns show three predicted Key Performance Indicators (KPI’s): service level, inventory investment, and operating costs (holding costs + ordering costs + shortage costs).

 Figure 1: The three types of analytics used to evaluate planning scenarios

The rows show four alternative inventory policies, expressed as scenarios. The “Live” scenario reports on the values of the KPI’s on July 1, 2018. The “99% All” scenario changes the current policy by raising the service level of all items to 99%. The “75 floor/99 ceiling” scenario raises service levels that are too low up to 75% and lowers very high (i.e., expensive) service levels down to 95%. The “Optimization” scenario prescribes item specific service levels that minimizes total operating costs.

The “Live 07-01-2018” scenario is an example of Descriptive Analytics. It shows the current baseline performance. The software then allows the user to try out changes in inventory policy by creating new “What If” scenarios that might then be converted to named scenarios for further consideration. The next two scenarios are examples of Predictive Analytics. They both assess the consequences of their recommended inventory control policies, i.e., recommended values of Min and Max for all items. The “Optimization” scenario is an example of Prescriptive Analytics because it recommends a best compromise policy.

Consider how the three alternative scenarios compare to the baseline “Live” scenario. The “99% All” scenario raises the item availability metrics, increasing service level from 88% to 99%. However, doing so increases the total inventory investment from $3 million to about $4 million. In contrast, the “75 floor/99 ceiling” scenario increases both service level and reduces the cash tied up in inventory by about $300,000. Finally, the “Optimization” scenario achieves an 80% service level, a reduction from the current 88%, but it cuts more than $2 million from the inventory value and reduces operating costs by more than $400,000 annually. From here, managers could try further options, such as giving back some of the $2 million savings to achieve a higher average service level.

Summary

Modern software packages for inventory planning and inventory optimization should offer three kinds of supply chain analytics: Descriptive, Predictive, and Prescriptive. Their combination lets inventory managers track their operations (Descriptive), forecast where their operations will be in the future (Predictive), and optimize their inventory policies in response in anticipation of future conditions (Prescriptive).

 

 

Leave a Comment

Related Posts

Quantum Inventory Theory?

Quantum Inventory Theory?

Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management.

Stop Leaking Money with Manual Inventory Controls

Stop Leaking Money with Manual Inventory Controls

An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock.

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

Consider what is meant by “demand management”, “demand planning”, and “forecasting”. These terms imply certain standard functionality for collaboration, statistical analysis, and reporting to support a professional demand planning process.  However, in most ERP systems, “demand management” running MRP and reconciling demand and supply for the purpose of placing orders

Recent Posts

  • Quantum atom software illustrationQuantum Inventory Theory?
    Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management. […]
  • Stop Leaking Money with Manual Inventory Controls
    An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock. […]
The Top 5 Myths about Demand Planning Implementations

The Smart Forecaster

Pursuing best practices in demand planning, forecasting and inventory optimization

1. The setup will be straightforward.

We just need to feed our demand histories into our new statistical methods, and we can start planning more effectively.  Not quite: it’s about the technology and the process. You are investing in a new business process to develop forecasts for driving business strategy and inventory planning decisions. It will take time to get all stakeholders involved: sales, marketing, procurement, operations, and maintenance/technicians (for spare parts inventory).  Who owns the forecast? What will your items’ forecast hierarchy look like?  Where will the most business knowledge come from?  Is there a consensus process that will use the business knowledge to customize the forecasts to your particular situation? Does everyone understand the statistical methods?   Is there agreement on the underlying values that balance holding, ordering and (especially) shortage costs? Are you prepared to make choices along the crucial tradeoff curve relating inventory costs to customer service levels?  How do you plan on measuring forecasting accuracy/error? Does management understand the concept of “forecast value add” whereby you track the error with each version of the forecast (statistical error vs. sales forecast error vs. consensus error).  Without this context and agreed upon participation from key stake holders, the system will still be implemented but used in silo

2. All I need is historical demand data, and then I can start forecasting.

Almost.  Getting good data isn’t easy.  Are your demand history data complete and correct? Are your supplier data (e.g., lead times) also complete and correct? Have you recognized the special needs of new and end-of-life items? Sure, IT could export a file of aggregated demand data (weekly or monthly), but how do you know it is correct?  When orders and shipments are booked, they fall under a variety of different transactions codes.  You have to be able to know how to compose your demand signal.  Orders or shipments? Include or exclude returns? What about warehouse transfers?  What about returns that occur many periods after initial shipment?  How will my ERP interpret the forecast?  But wait…we are using a solution with an ERP connector that promises data will flow back and forth seamlessly.  An ERP connector will certainly cover the transfer of historical data and forecast results between systems but it won’t improve bad data quality.  You also have to make sure the ERP connector has the flexibility of determining how to compose your demand history.  For example, if it is hard coded to pull certain transactions types that you may not want or require different transactions it doesn’t include, you’ll need customizations.  There is also the problem of product supersession and/or location changes – i.e., Product A gets phased out and becomes Product B, or now Product A ships from a different warehouse.   Sounds simple, but if this happens often across thousands of items then it must be accounted for as part of an automatic forecasting process.  Otherwise, your users are required to manually manage this constant updating. Then you lose economies of scale. More “data wrangling” means more hassle, more errors, and missed decision deadlines. Less frequent updates can mean less accurate forecasts, which leads to excess inventory for some items and insufficient inventory for others

3. If we get a better forecast, we’ll have the right inventory, reduce stockouts, and increase service.

The demand forecast is one component of a larger process.  If you have another department that applies incorrect buffers (too much or too little safety stock), then a lot of the benefit of a more accurate forecast goes out the window.  You have to look holistically at forecasting within the context of inventory management. You can’t get maximum benefit (and in some cases, any benefit) unless you account for all components including buffer levels such as safety stock and reorder points, ordering rules, and managing supplier/internal lead times. It is not uncommon for buyers to implement rules of thumb inventory policies such as ordering early or inflating the forecast to reduce the risk of running out.  The opposite behavior where an order signal triggered by the forecast is deferred to a later date to prevent an order from being placed “too early” is equally prevalent.  This type of behavior is based on a pain avoidance response that occurs within companies that have an ad-hoc inventory planning process that doesn’t holistically connect the forecast to inventory strategy.  

4. The more forecasting models the better.

 This is true in some cases. In an ironic twist, the more models to choose from sometimes means you’ll have a greater chance of picking the wrong one.  This occurs even when there is an automated system selecting the right method.  This is because most automated forecasting systems still make the mistake of selecting methods based on best fit to past demand. This backward-looking approach usually results in poor performance when looking forward in time; this can be tested by waiting a bit and then comparing forecasted versus actual demand (or, if you don’t want to wait, by hiding some of the recent data and forecasting it, in which case the actuals are already in hand). In principle, having more models might be useful, but what is important is understanding the approach for model selection.  Furthermore, most forecasting models produce a single-number forecast (“Demand for Product A will be 17 units next month”) without any indication of the forecast uncertainty or margin of error. Without knowing the margin of error, you cannot appreciate and rationally manage forecast risk.

In our software, we offer automated time series selection that chooses from dozens of proven techniques on the basis of estimated future performance, not fit to past data.  We also go beyond single-number forecasting using probabilistic methods to generate thousands of forecast scenarios to assess forecast uncertainty.  We’ve found that this approach is considerably more accurate for certain types of data than the traditional tournament selection.  So, in these situations the number of models we’d recommend using is “One!”  Does that it make inferior?  Of course not.  Take the time to fine-tune your models in order to see what works best for your business.

5. With the right software, anybody can do the job well.

Would that it were so. However, after our involvement in decades of implementations, it is clear that not everybody should be at the demand planning keyboard. The job doesn’t need a super-hero, but certain traits make for success:

  • Having a company-wide perspective. So many problems in demand planning stem from stove-piped thinking. A proper planning process surfaces the need for all stakeholders’ involvement, so a user unable to think beyond his or her previous fiefdom can be a liability.
  • Being innumerate. A user who is not comfortable with numbers will struggle.
  • Appreciating randomness. This is similar to innumeracy but goes beyond. Most of the friction in demand planning and inventory optimization derives from randomness: in product demand, in supplier lead time, etc. Without a good feel for how randomness causes trouble, a user will often be puzzled at how poorly his or her decisions turn out
  • Being incurious. Top-flight software encourages users to game out “what if?” scenarios to see how to tweak automatically computed solutions to get even better results. If the user never gets into a “what if?” mentality, they will under perform. Furthermore, playing with alternative scenarios is one of the best ways to build an instinctive feel for the randomness in the system.

Conclusion

The five reasons outlined here show why implementing a forecasting, demand planning, or inventory optimization system isn’t as simple as turning on the software, importing your historical data, and getting some user training on how to operate the software.  You are implementing a new process for planning your business and determining stocking policy that will drive spending on inventory and impact your ability to capture sales.  However, the effort is well worth it.  Per an Institute of Business Forecasting (IBF) blog, a 1% reduction in under-forecast error at a $50 Million company yields a savings as much as $1.52M.  Conversely, the benefits of a 1% reduction in over-forecast error were $1.28M yielding an average benefit of $1.4M.  This means you stand to save your business $260,000 annually for every $10 Million in revenue! 

 

 

Leave a Comment

Related Posts

Quantum Inventory Theory?

Quantum Inventory Theory?

Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management.

Stop Leaking Money with Manual Inventory Controls

Stop Leaking Money with Manual Inventory Controls

An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock.

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

Consider what is meant by “demand management”, “demand planning”, and “forecasting”. These terms imply certain standard functionality for collaboration, statistical analysis, and reporting to support a professional demand planning process.  However, in most ERP systems, “demand management” running MRP and reconciling demand and supply for the purpose of placing orders

Recent Posts

  • Quantum atom software illustrationQuantum Inventory Theory?
    Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management. […]
  • Stop Leaking Money with Manual Inventory Controls
    An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock. […]
Protect your Demand Planning Process from Regime Change

The Smart Forecaster

Pursuing best practices in demand planning, forecasting and inventory optimization

No, not that kind of regime change: Nothing here about cruise missiles and stealth bombers. And no, we’re not talking about the other kind of regime change that hits closer to home: Shuffling the C-Suite at your company.

“Regime change” has a third meaning that is relevant to your profession as a demand planner or inventory manager. To researchers in economics and finance, regime change means sudden shifts in the very character of a time series of random observations. The random time series in question here is the sequence of daily (or weekly or monthly) demand counts for your products and inventory items.

Most forecasting software uses statistical algorithms to process historical demand. It may add additional steps, such as incorporating field intelligence from sales people, but everything starts with the demand history of whatever item you must manage.

The question raised by regime change is, which data do you use? The simple answer is “All of it”, because that leads to the most accurate forecasts — but only if your data world is stable. If your data world is turbulent, then using all the data means you are basing forecasts on bye-gone conditions. In turn, inputting obsolete data into your forecasting algorithms inevitably leads to reduced forecast accuracy.

Note that dealing with regime change is not the same as dealing with outliers. Outliers are usually one-off exceptions caused by transient events, such as a kink in your supply chain caused by a huge blizzard choking off all transit paths. In contrast, regime change persists over a longer period and is therefore capable of doing more damage to your forecasts. Here’s an analogy: Outliers are about weather, and regime change is about climate.

The most drastic forms of regime change are existential. Figure 1 shows an example of an existential change: There was no demand at all for a long time, then suddenly there was demand. If you had no demand for an item because it didn’t exist but you retain zero demand values in your database, and then the item goes live and you do have sales, the transition from nothing to something is an extreme regime change. Including all those zero demand values from before “Day One” is sure to bias statistical forecasts down below where they should be. The same thing happens if you kill off a product but keep recording zero demand: Including all those recent zeros degrades your demand forecasts.

In principle, careful record keeping should eliminate these problems. You should record only meaningful zero values. If you have a new item, start recording when it goes live. If you no longer have any demand for an item and expect none, purge it from your database, or at least forecast zero demand.

Unfortunately, there is a difference between principle and practice. We see many instances in which the data records for both new and dormant items are not properly kept, with “fake zeros” confounded with “real zeros”. This problem is not necessarily the result of incompetence: Usually, it is a byproduct of the scale of the problem, with too few people trying to keep track of too many items.

These existential regime changes are relatively easy to deal with compared to more subtle forms, which appear to afflict more items. Figure 2 shows two examples of regime changes in a pattern of ongoing sales. There are any number of factors that can change the demand for an item: salesforce performance, marketing and advertising efforts, competitor and supplier actions, new customers arising or old customers disappearing, etc. If demand for an item has been chugging along at a steady 1 unit per day but suddenly doubles (or vice versa), that’s a regime change. In the new world order, demand is 2 units/day and forecasts should reflect that. Instead, statistical forecasting algorithms will forecast too little demand if fed all the data, including that from before the regime change.

How do you protect yourself from regime change? The answer is the same for the cruelest dictator or the most innocent demand planner: Intelligence. And because threats are many, the intelligence is best automated. Modern software systems have the capability to screen tens of thousands of items for signs of regime change. Then the software can call your attention to the problematic items and prompt you to designate which recent data to use in calculations. Or the software can automatically detect and correct for regime change, working quickly at a scale that would easily defeat any busy person working “by hand”.

 

Leave a Comment

Related Posts

Quantum Inventory Theory?

Quantum Inventory Theory?

Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management.

Stop Leaking Money with Manual Inventory Controls

Stop Leaking Money with Manual Inventory Controls

An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock.

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

5 Considerations When Evaluating your ERP system’s Forecasting Capabilities

Consider what is meant by “demand management”, “demand planning”, and “forecasting”. These terms imply certain standard functionality for collaboration, statistical analysis, and reporting to support a professional demand planning process.  However, in most ERP systems, “demand management” running MRP and reconciling demand and supply for the purpose of placing orders

Recent Posts

  • Quantum atom software illustrationQuantum Inventory Theory?
    Physics at the quantum level is quite weird – not at all like what we experience in our usual macroscopic life. Among the oddities are “superposition”, “entanglement”, and “quantum foam.”  Weird as these phenomena are, I cannot help seeing analogs in the supposedly different world of supply chain management. […]
  • Stop Leaking Money with Manual Inventory Controls
    An inventory professional who is responsible for 10,000 items has 10,000 things to stress over every day. Double that for someone responsible for 20,000 items. In the crush of business, routine decisions often take second place to fire-fighting: dealing with supplier hiccups, straightening out paperwork mistakes, recovering from that collision between a truck and the loading dock. […]