Simple is Good, Except When It Isn’t

In this blog, we are steering the conversation towards the transformative potential of technology in inventory management. The discussion centers around the limitations of simple thinking in managing inventory control processes and the necessity of adopting systematic software solutions. Dr. Tom Willemain highlights the contrast between Smart Software and the basic, albeit comfortable, approaches commonly employed by many businesses. These elementary methods, often favored for their ease of use and zero cost, are scrutinized for their inadequacies in addressing the dynamic challenges of inventory management.

​The importance of this subject lies in the critical role inventory management plays in a business’s operational efficiency and its direct impact on customer satisfaction and profitability. Dr. Tom Willemain points out the common pitfalls of relying on oversimplified rules of thumb, such as the whimsical nursery rhyme used by one company to determine reorder points, or the gut feel method, which depends on unquantifiable intuition rather than data. These approaches, while appealing in their simplicity, fail to adapt to market fluctuations, supplier reliability, or changes in demand, thus posing significant risks to the business. The video also critiques the practice of setting reorder points based on multiples of average demand, highlighting its disregard for demand volatility, a fundamental consideration in inventory theory.

Concluding, the presenter advocates for a more sophisticated, data-driven approach to inventory management. By leveraging advanced software solutions like those offered by Smart Software, businesses can accurately model complex demand patterns and stress-test inventory rules against numerous future scenarios. This scientific method allows for the setting of reorder points that account for real-world variability, thereby minimizing the risk of stockouts and the associated costs. The video emphasizes that while simple heuristics may be tempting for their ease of use, they are inadequate for today’s dynamic market conditions. The presenter encourages viewers to embrace technological solutions that offer professional-grade accuracy and adaptability, ensuring sustainable business success.

 

 

Centering Act: Spare Parts Timing, Pricing, and Reliability

Just as the renowned astronomer Copernicus transformed our understanding of astronomy by placing the sun at the center of our universe, today, we invite you to re-center your approach to inventory management. And while not quite as enlightening, this advice will help your company avoid being caught in the gravitational pull of inventory woes—constantly orbiting between stockouts, surplus gravity, and the unexpected cosmic expenses of expediting?

In this article, we’ll walk you through the process of crafting a spare parts inventory plan that prioritizes availability metrics such as service levels and fill rates while ensuring cost efficiency. We’ll focus on an approach to inventory planning called Service Level-Driven Inventory Optimization. Next, we’ll discuss how to determine what parts you should include in your inventory and those that might not be necessary. Lastly, we’ll explore ways to enhance your service-level-driven inventory plan consistently.

In service-oriented businesses, the consequences of stockouts are often very significant.  Achieving high service levels depends on having the right parts at the right time. However, having the right parts isn’t the only factor. Your Supply Chain Team must develop a consensus inventory plan for every part, then continuously update it to reflect real-time changes in demand, supply, and financial priorities.

 

Managing inventory with Service-level-driven planning combines the ability to plan thousands of items with high-level strategic modeling. This requires addressing core issues facing inventory executives:

  • Lack of control over supply and associated lead times.
  • Unpredictable intermittent demand.
  • Conflicting priorities between maintenance/mechanical teams and Materials Management.
  • Reactive “wait and see” approach to planning.
  • Misallocated inventory, causing stockouts and excess.
  • Lack of trust in systems and processes.

The key to optimal service parts management is to grasp the balance between providing excellent service and controlling costs. To do this, we must compare the costs of stockout with the cost of carrying additional spare parts inventory. The costs of a stockout will be higher for critical or emergency spares, when there is a service level agreement with external customers, for parts used in multiple assets, for parts with longer supplier lead times, and for parts with a single supplier. The cost of inventory may be assessed by considering the unit costs, interest rates, warehouse space that will be consumed, and potential for obsolescence (parts used on a soon-to-be-retired fleet have a higher obsolescence risk, for example).

To arbitrate how much stock should be put on the shelf for each part, it is critical to establish consensus on the desired key metrics that expose the tradeoffs the business must make to achieve the desired KPIs. These KPIs will include Service Levels that tell you how often you meet usage needs without falling short on stock, Fill Rates that tell you what percentage of demand is filled, and Ordering costs detail the expenses incurred when you place and receive replenishment orders. You also have Holding costs, which encompass expenses like obsolescence, taxes, and warehousing, and Shortage costs that pertain to expenses incurred when stockouts happen.

An MRO business or Aftermarket Parts Planning team might desire a 99% service level across all parts – i.e., the minimum stockout risk that they are willing to accept is 1%. But what if the amount of inventory needed to support that service level is too expensive? To make an informed decision on whether there is going to be a return on that additional inventory investment, you’ll need to know the stockout costs and compare that to the inventory costs. To get stockout costs, multiply two key elements: the cost per stockout and the projected number of stockouts. To get inventory value, multiply the units required by the unit cost of each part. Then determine the annual holding costs (typically 25-35% of the unit cost). Choose the option that yields a total lower cost. In other words, if the benefit associated with adding more stock (reduced shortage costs) outweighs the cost (higher inventory holding costs), then go for it. A thorough understanding of these metrics and the associated tradeoffs serves as the compass for decision-making.

Modern software aids in this process by allowing you to simulate a multitude of future scenarios. By doing so, you can assess how well your current inventory stocking strategies are likely to perform in the face of different demand and supply patterns. If anything falls short or goes awry, it’s time to recalibrate your approach, factoring in current data on usage history, supplier lead times, and costs to prevent both stockouts and overstock situations.

 

Enhance your service-level-driven inventory plan consistently.

In conclusion, it’s crucial to assess your service-level-driven plan continuously. By systematically constructing and refining performance scenarios, you can define key metrics and goals, benchmark expected performance, and automate the calculation of stocking policies for all items. This iterative process involves monitoring, revising, and repeating each planning cycle.

The depth of your analysis within these stocking policies relies on the data at your disposal and the configuration capabilities of your planning system. To achieve optimal outcomes, it’s imperative to maintain ongoing data analysis. This implies that a manual approach to data examination is typically insufficient for the needs of most organizations.

For information on how Smart Software can help you meet your service supply chain goals with service-driven planning and more, visit the following blogs.

–   “Explaining What  Service-Level Means in Your Inventory Optimization Software”  Stocking recommendations can be puzzling, especially when they clash with real-world needs.  In this post, we’ll break down what that 99% service level means and why it’s crucial for managing inventory effectively and keeping customers satisfied in today’s competitive landscape.

–  “Service-Level-Driven Planning for Service Parts Businesses” Service-Level-Driven Service Parts Planning is a four-step process that extends beyond simplified forecasting and rule-of-thumb safety stocks. It provides service parts planners with data-driven, risk-adjusted decision support.

–   “How to Choose a Target Service Level.” This is a strategic decision about inventory risk management, considering current service levels and fill rates, replenishment lead times, and trade-offs between capital, stocking and opportunity costs.  Learn approaches that can help.

–   “The Right Forecast Accuracy Metric for Inventory Planning.”  Just because you set a service level target doesn’t mean you’ll actually achieve it. If you are interested in optimizing stock levels, focus on the accuracy of the service level projection. Learn how.

 

Spare Parts Planning Software solutions

Smart IP&O’s service parts forecasting software uses a unique empirical probabilistic forecasting approach that is engineered for intermittent demand. For consumable spare parts, our patented and APICS award winning method rapidly generates tens of thousands of demand scenarios without relying on the assumptions about the nature of demand distributions implicit in traditional forecasting methods. The result is highly accurate estimates of safety stock, reorder points, and service levels, which leads to higher service levels and lower inventory costs. For repairable spare parts, Smart’s Repair and Return Module accurately simulates the processes of part breakdown and repair. It predicts downtime, service levels, and inventory costs associated with the current rotating spare parts pool. Planners will know how many spares to stock to achieve short- and long-term service level requirements and, in operational settings, whether to wait for repairs to be completed and returned to service or to purchase additional service spares from suppliers, avoiding unnecessary buying and equipment downtime.

Contact us to learn more how this functionality has helped our customers in the MRO, Field Service, Utility, Mining, and Public Transportation sectors to optimize their inventory. You can also download the Whitepaper here.

 

 

White Paper: What you Need to know about Forecasting and Planning Service Parts

 

This paper describes Smart Software’s patented methodology for forecasting demand, safety stocks, and reorder points on items such as service parts and components with intermittent demand, and provides several examples of customer success.

 

    Learning from Inventory Models

    In this video blog, we explore the integral role that inventory models play in shaping the decision-making processes of professionals across various industries. These models, whether they are tangible computer simulations or intangible mental constructs, serve as critical tools in managing the complexities of modern business environments. The discussion begins with an overview of how these models are utilized to predict outcomes and streamline operations, emphasizing their relevance in a constantly evolving market landscape.

    ​The discussion further explores how various models distinctly influence strategic decision-making processes. For instance, the mental models professionals develop through experience often guide initial responses to operational challenges. These models are subjective, built from personal insights and past encounters with similar situations, allowing quick, intuitive decision-making. On the other hand, computer-based models provide a more objective framework. They use historical data and algorithmic calculations to forecast future scenarios, offering a quantitative basis for decisions that need to consider multiple variables and potential outcomes. This section highlights specific examples, such as the impact of adjusting order quantities on inventory costs and ordering frequency or the effects of fluctuating lead times on service levels and customer satisfaction.

    In conclusion, while mental models provide a framework based on experience and intuition, computer models offer a more detailed and numbers-driven perspective. Combining both types of models allows for a more robust decision-making process, balancing theoretical knowledge with practical experience. This approach enhances the understanding of inventory dynamics and equips professionals with the tools to adapt to changes effectively, ensuring sustainability and competitiveness in their respective fields.

     

     

    Looking for Trouble in Your Inventory Data

    In this video blog, the spotlight is on a critical aspect of inventory management: the analysis and interpretation of inventory data. The focus is specifically on a dataset from a public transit agency detailing spare parts for buses. With over 13,700 parts recorded, the data presents a prime opportunity to delve into the intricacies of inventory operations and identify areas for improvement.

    Understanding and addressing anomalies within inventory data is important for several reasons. It not only ensures the efficient operation of inventory systems but also minimizes costs and enhances service quality. This video blog explores four fundamental rules of inventory management and demonstrates, through real-world data, how deviations from these rules can signal underlying issues. By examining aspects such as item cost, lead times, on-hand and on-order units, and the parameters guiding replenishment policies, the video provides a comprehensive overview of the potential challenges and inefficiencies lurking within inventory data. 

    We highlight the importance of regular inventory data analysis and how such an analysis can serve as a powerful tool for inventory managers, allowing them to detect and rectify problems before they escalate. Relying on antiquated approaches can lead to inaccuracies, resulting in either excess inventory or unfulfilled customer expectations, which in turn could cause considerable financial repercussions and inefficiencies in operations.

    Through a detailed examination of the public transit agency’s dataset, the video blog conveys a clear message: proactive inventory data review is essential for maintaining optimal inventory operations, ensuring that parts are available when needed, and avoiding unnecessary expenditures.

    Leveraging advanced predictive analytics tools like Smart Inventory Planning and Optimization will help you control your inventory data. Smart IP&O will show you decisive demand and inventory insights into evolving spare parts demand patterns at every moment, empowering your organization with the information needed for strategic decision-making.

     

     

    Bottom Line Strategies for Spare Parts Planning

    Managing spare parts presents numerous challenges, such as unexpected breakdowns, changing schedules, and inconsistent demand patterns. Traditional forecasting methods and manual approaches are ineffective in dealing with these complexities. To overcome these challenges, this blog outlines key strategies that prioritize service levels, utilize probabilistic methods to calculate reorder points, regularly adjust stocking policies, and implement a dedicated planning process to avoid excessive inventory. Explore these strategies to optimize spare parts inventory and improve operational efficiency.

    Bottom Line Upfront

    ​1.Inventory Management is Risk Management.

    2.Can’t manage risk well or at scale with subjective planning – Need to know service vs. cost.

    3.It’s not supply & demand variability that are the problem – it’s how you handle it.

    4.Spare parts have intermittent demand so traditional methods don’t work.

    5.Rule of thumb approaches don’t account for demand variability and misallocate stock.

    6.Use Service Level Driven Planning  (service vs. cost tradeoffs) to drive stock decisions.

    7.Probabilistic approaches such as bootstrapping yield accurate estimates of reorder points.

    8.Classify parts and assign service level targets by class.

    9.Recalibrate often – thousands of parts have old, stale reorder points.

    10.Repairable parts require special treatment.

     

    Do Focus on the Real Root Causes

    Bottom Line strategies for Spare Parts Planning Causes

    Intermittent Demand

    Bottom Line strategies for Spare Parts Planning Intermittent Demand

     

    • Slow moving, irregular or sporadic with a large percentage of zero values.
    • Non-zero values are mixed in randomly – spikes are large and varied.
    • Isn’t bell shaped (demand is not Normally distributed around the average.)
    • At least 70% of a typical Utility’s parts are intermittently demanded.

    Bottom Line strategies for Spare Parts Planning 4

     

    Normal Demand

    Bottom Line strategies for Spare Parts Planning Intermittent Demand

    • Very few periods of zero demand (exception is seasonal parts.)
    • Often exhibits trend, seasonal, or cyclical patterns.
    • Lower levels of demand variability.
    • Is bell-shaped (demand is Normally distributed around the average.)

    Bottom Line strategies for Spare Parts Planning 5

    Don’t rely on averages

    Bottom Line strategies for Spare Parts Planning Averages

    • OK for determining typical usage over longer periods of time.
    • Often forecasts more “accurately” than some advanced methods.
    • But…insufficient for determining what to stock.

     

    Don’t Buffer with Multiples of Averages

    Example:  Two equally important parts so let’s treat them the same.
    We’ll order more  when On Hand Inventory ≤ 2 x Avg Lead Time Demand.

    Bottom Line strategies for Spare Parts Planning Multiple Averages

     

    Do use Service Level tradeoff curves to compute safety stock

    Bottom Line strategies for Spare Parts Planning Service Level

    Standard Normal Probabilities

    OK for normal demand. Doesn’t work with intermittent demand!

    Bottom Line strategies for Spare Parts Planning Standard Probabilities

     

    Don’t use Normal (Bell Shaped) Distributions

    • You’ll get the tradeoff curve wrong:

    – e.g., You’ll target 95% but achieve 85%.

    – e.g., You’ll target 99% but achieve 91%.

    • This is a huge miss with costly implications:

    – You’ll stock out more often than expected.

    – You’ll start to add subjective buffers to compensate and then overstock.

    – Lack of trust/second-guessing of outputs paralyzes planning.

     

    Why Traditional Methods Fail on Intermittent Demand: 

    Traditional Methods are not designed to address core issues in spare parts management.

    Need: Probability distribution (not bell-shaped) of demand over variable lead time.

    • Get: Prediction of average demand in each month, not a total over lead time.
    • Get: Bolted-on model of variability, usually the Normal model, usually wrong.

    Need: Exposure of tradeoffs between item availability and cost of inventory.

    • Get: None of this; instead, get a lot of inconsistent, ad-hoc decisions.

     

    Do use Statistical Bootstrapping to Predict the Distribution:

    Then exploit the distribution to optimize stocking policies.

    Bottom Line strategies for Spare Parts Planning Predict Distribution

     

    How does Bootstrapping Work?

    24 Months of Historical Demand Data.

    Bottom Line strategies for Spare Parts Planning Bootstrapping 1

    Bootstrap Scenarios for a 3-month Lead Time.

    Bottom Line strategies for Spare Parts Planning Bootstrapping 2

    Bootstrapping Hits the Service Level Target with nearly 100% Accuracy!

    • National Warehousing Operation.

    Task: Forecast inventory stocking levels for 12,000 intermittently demanded SKUs at 95% & 99% service levels

    Results:

    At 95% service level, 95.23% did not stock out.

    At 99% service level, 98.66% did not stock out.

    This means you can rely on output to set expectations and confidently make targeted stock adjustments that lower inventory and increase service.

     

    Set Target Service Levels According to Order Frequency & Size

    Set Target Service Levels According to Order Frequency

     

    Recalibrate Reorder Points Frequently

    • Static ROPs cause excess and shortages.
    • As lead time increases, so should the ROP and vice versa.
    • As usage decreases, so should the ROP and vice versa.
    • Longer you wait to recalibrate, the greater the imbalance.
    • Mountains of parts ordered too soon or too late.
    • Wastes buyers’ time placing the wrong orders.
    • Breeds distrust in systems and forces data silos.

    Recalibrate Reorder Points Frequently

    Do Plan Rotables (Repair Parts) Differently

    Do Plan Rotables (Repair Parts) Differently

     

    Summary

    1.Inventory Management is Risk Management.

    2.Can’t manage risk well or at scale with subjective planning – Need to know service vs. cost.

    3.It’s not supply & demand variability that are the problem – it’s how you handle it.

    4.Spare parts have intermittent demand so traditional methods don’t work.

    5.Rule of thumb approaches don’t account demand variability and misallocate stock.

    6.Use Service Level Driven Planning  (service vs. cost tradeoffs) to drive stock decisions.

    7.Probabilistic approaches such as bootstrapping yield accurate estimates of reorder points.

    8.Classify parts and assign service level targets by class.

    9.Recalibrate often – thousands of parts have old, stale reorder points.

    10.Repairable parts require special treatment.

     

    Spare Parts Planning Software solutions

    Smart IP&O’s service parts forecasting software uses a unique empirical probabilistic forecasting approach that is engineered for intermittent demand. For consumable spare parts, our patented and APICS award winning method rapidly generates tens of thousands of demand scenarios without relying on the assumptions about the nature of demand distributions implicit in traditional forecasting methods. The result is highly accurate estimates of safety stock, reorder points, and service levels, which leads to higher service levels and lower inventory costs. For repairable spare parts, Smart’s Repair and Return Module accurately simulates the processes of part breakdown and repair. It predicts downtime, service levels, and inventory costs associated with the current rotating spare parts pool. Planners will know how many spares to stock to achieve short- and long-term service level requirements and, in operational settings, whether to wait for repairs to be completed and returned to service or to purchase additional service spares from suppliers, avoiding unnecessary buying and equipment downtime.

    Contact us to learn more how this functionality has helped our customers in the MRO, Field Service, Utility, Mining, and Public Transportation sectors to optimize their inventory. You can also download the Whitepaper here.

     

     

    White Paper: What you Need to know about Forecasting and Planning Service Parts

     

    This paper describes Smart Software’s patented methodology for forecasting demand, safety stocks, and reorder points on items such as service parts and components with intermittent demand, and provides several examples of customer success.