Elephants and Kangaroos ERP vs. Best of Breed Demand Planning

“Despite what you’ve seen in your Saturday morning cartoons, elephants can’t jump, and there’s one simple reason: They don’t have to. Most jumpy animals—your kangaroos, monkeys, and frogs—do it primarily to get away from predators.”  — Patrick Monahan, Science.org, Jan 27, 2016.

Now you know why the largest ERP companies can’t develop high quality best-of-breed like solutions. They never had to, so they never evolved to innovate outside of their core focus. 

However, as ERP systems have become commoditized, gaps in their functionality became impossible to ignore. The larger players sought to protect their share of customer wallet by promising to develop innovative add-on applications to fill all the white spaces.  But without that “innovation muscle,” many projects failed, and mountains of technical debt accumulated.

Best-of-breed companies evolved to innovate and have deep functional expertise in specific verticals.  The result is that best of breed ERP add-ons are easier to use, have more features, and deliver more value than the native ERP modules they replace. 

If your ERP provider has already partnered with an innovative best of breed add-on provider*, you’re all set! But if you can only get the basics from your ERP, go with a best-of-breed add-on that has a bespoke integration to the ERP. 

A great place to start your search is to look for ERP demand planning add-ons that add brains to the ERP’s brawn, i.e., those that support inventory optimization and demand forecasting.  Leverage add-on tools like Smart’s statistical forecasting, demand planning, and inventory optimization apps to develop forecasts and stocking policies that are fed back to the ERP system to drive daily ordering. 

*App-stores are a license for the best of breed to sell into the ERP companies base –  being listed  partnerships.

 

 

 

 

Is your demand planning and forecasting process a black box?

There’s one thing I’m reminded of almost every day at Smart Software that puzzle me: most companies do not understand how forecasts are created, and stocking policies are determined.  It’s an organizational black box. Here is an example from a recent sales call:

How do you forecast?
We use history.

How do you use history?
What do you mean?

Well, you can take an average of the last year, last two years, average the most recent periods, or use some other type of formula to generate the forecast.
I’m pretty sure we use an average of the last 12 months.

Why 12 months instead of a different amount of history?
12 months is a good amount of time to use because it doesn’t get skewed by older data but it’s recent enough

How do you know it’s more accurate than using 18 months or some other length of history?
We don’t know. We do adjust the forecasts based on feedback from sales.  

Do you know if the adjustments make things more accurate or less than if you just used the average?
We don’t know but are confident that forecasts are inflated

What do the inventory buyers do then if they think the numbers are inflated?
They have lots of business knowledge and adjust their buys accordingly

So, is it fair to say they would ignore the forecasts at least some of the time?
Yes, some of the time.

How do the buyers decide when to order more? Do you have a reorder point or safety stock specified in your ERP system that helps guide these decisions?
Yes, we use a safety stock field.

How is safety stock calculated?
Buyers determine this based on the importance of the item, lead times, and other considerations such as how many customers purchase the item, the velocity of the item, it’s cost.  They’ll carry different amounts of safety stock depending on this.

The discussion continued. The main takeaway here is that when you scratch just below the surface, far more questions are revealed than answers.  This often means that the inventory planning and demand forecast process is highly subjective, varies from planner to planner, is not well understood by the rest of the organization, and likely to be reactive.  As Tom Willemain has described it’s “chaos masked by improvisation.”   The “as-is” process needs to be fully identified and documented.  Only then can gaps be exposed, and improvements can be made.   Here is a list of 10 questions  you can ask that will reveal your organization’s true forecasting, demand planning, and inventory planning process.

 

 

 

 

 

Fifteen questions that reveal how forecasts are computed in your company

In a recent LinkedIn post, I detailed four questions that, when answered, will reveal how forecasts are being used in your business.  In this article, we’ve listed questions you can ask that will reveal how forecasts are created.

1. When we ask users how they create forecasts, their answer will often be “we use history.” This obviously isn’t enough information, as there are different types of demand history that require different forecasting methods. If you are using historical data, then make sure to find out if you are using an averaging model, a trending model, a seasonal model, or something else to forecast.

2. Once you know the model used, ask about the parameter values of those models. The forecast output of an “average” will differ, sometimes significantly, depending on the number of periods you are averaging.  So, find out whether you are using an average of the last 3 months, 6 months, 12 months, etc.

3. If you are using trending models, ask how the model weights are set. For example, in a trending model, such as double exponential smoothing, the forecasts will differ significantly depending on how the calculations weight recent data compared to older data (higher weights put more emphasis on the recent data).

4. If you are using seasonal models, the forecast results are going to be impacted by the “level” and “trending weights” used. You should also determine whether seasonal periods are forecasted with multiplicative or additive seasonality.  (Additive seasonality says, e.g., “Add 100 units for July”, whereas multiplicative seasonality says “Multiply by 1.25 for July.”) Finally, you may not be using these types of methods at all.  Some practitioners will use a forecast method that simply averages prior periods (i.e., next June will be forecasted based on the average of the prior three Junes).

5. How do you go about choosing one model over another? Does the choice of technique depend on the type of demand data or when new demand data are available? Is this process automated? Or if a planner chooses a trend model subjectively, will that item continue to be forecasted with that model until the planner changes it again?

6. Are your forecasts “fully automatic,” so that trend and/or seasonality are detected automatically? Or are your forecasts dependent on item classifications that must be maintained by users? The latter requires more time and attention from planners to define what behavior constitutes trend, seasonality, etc.

7. What are the item classification rules used? For example, an item may be considered a trending item if demand increases by more than 5% period-over-period. An item may be considered seasonal if 70% or more of the annual demand occurs in four or fewer periods. Such rules are user-defined and often require overly broad assumptions. Sometimes they are configured when a system was originally implemented but never revised even as conditions change. It’s important to make sure any classification rules are understood and, if necessary, updated.

8. Does the forecast regenerate automatically when new data are available, or do you have to manually regenerate the forecasts?

9. Do you check for any change in forecast from one period to the next before deciding whether to use the new forecast? Or do you default to the new forecast?

10. How are forecast overrides that were made in prior planning cycles treated when a new forecast is created? Are they reused or replaced?

11. How do you incorporate forecasts made by your sales team or by your customers? Do these forecasts replace the baseline forecast, or do you use these inputs to make planner overrides to the baseline forecast?

12. Under what circumstances would you ignore the baseline forecast and use exactly what sales or customers are telling you?

13. If you rely on customer forecasts, what do you do about customers who don’t provide forecasts?

14. How do you document the effectiveness of your forecasting approach?  Most companies only measure the accuracy of the final forecast that is submitted to the ERP system, if they measure anything. But they don’t assess alternative predictions that might have been used. It is important to compare what you are doing to benchmarks. For example, do the methods you are using outperform a naïve forecast (i.e., “tomorrow equals today,” which requires no thought), or what you saw last year, or the average of the last 12 months.  Benchmarking your baseline forecast insures you are squeezing as much accuracy as possible out of the data.

15. Do you measure whether overrides from sales, customers, and planners are making the forecast better or worse? This is just as important as measuring whether your statistical approaches are outperforming the naïve method.  If you don’t know whether overrides are helping or hurting, the business can’t get better at forecasting – you need to know which steps are adding value so that you can do more of those and get even better. If you aren’t documenting forecast accuracy and conducting “forecast value add” analysis, then you aren’t able to properly assess whether the forecasts being produced are the best you could make.  You’ll miss opportunities to improve the process, increase accuracy, and educate the business on what type of forecast error is to be expected.

 

 

How to interpret and manipulate forecast results with different forecast methods

Smart IP&O is powered by the SmartForecasts® forecasting engine that automatically selects the most appropriate method for each item.  Smart Forecast methods are listed below:

  • Simple Moving Average and Single Exponential Smoothing for flat, noisy data
  • Linear Moving Average and Double Exponential Smoothing for trending data
  • Winters Additive and Winters Multiplicative for seasonal and seasonal & trending data.

This blog explains how each model works using time plots of historical and forecast data.  It outlines how to go about choosing which model to use.   The examples below show the same history, in red, forecasted with each method, in dark green, compared to the Smart-chosen winning method, in light green.

 

Seasonality
If you want to force (or prevent) seasonality to show in the forecast, then choose Winters models.  Both methods require 2 full years of history.

`Winter’s multiplicative will determine the size of the peaks or valleys of seasonal effects based on a percentage difference from a trending average volume.  It is not a good fit for very low volume items due to division by zero when determining that percentage. Note in the image below that the large percentage drop in seasonal demand in the history is being projected to continue over the forecast horizon making it look like there isn’t any seasonal demand despite using a seasonal method.

 

Winter’s multiplicative Forecasting method software

Statistical forecast produced with Winter’s multiplicative method. 

 

Winter’s additive will determine the size of the peaks or valleys of seasonal effects based on a unit difference from the average volume.  It is not a good fit if there’s significant trend to the data.  Note in the image below that seasonality is now being forecasted based on the average unit change in seasonality. So, the forecast still clearly reflects the seasonal pattern despite the down trend in both the level and seasonal peaks/valleys.

Winter’s additive Forecasting method software

Statistical forecast produced with Winter’s additive method.

 

Trend

If you want to force (or prevent) trend up or down to show in the forecast, then restrict the chosen methods to (or remove the methods of) Linear Moving Average and Double Exponential Smoothing.

 Double exponential smoothing will pick up on a long-term trend.  It is not a good fit if there are few historical data points.

Double exponential smoothing Forecasting method software

Statistical forecast produced with Double Exponential Smoothing

 

Linear moving average will pick up on nearer term trends.  It is not a good fit for highly volatile data

Linear moving average Forecasting method software

 

Non-Trending and Non-Seasonal Data
If you want to force (or prevent) an average from showing in the forecast, then restrict the chosen methods to (or remove the methods of) Simple Moving Average and Single Exponential Smoothing.

Single exponential smoothing will weigh the most recent data more heavily and produce a flat-line forecast.  It is not a good fit for trending or seasonal data.

Single exponential smoothing Forecasting method software

Statistical forecast using Single Exponential Smoothing

Simple moving average will find an average for each period, sometimes appearing to wiggle, and better for longer-term averaging.  It is not a good fit for trending or seasonal data.

Simple moving average Forecasting method software

Statistical forecast using Simple Moving Average

 

 

 

The Role of Trust in the Demand Forecasting Process Part 2: What do you Trust

“Regardless of how much effort is poured into training forecasters and developing elaborate forecast support systems, decision-makers will either modify or discard the predictions if they do not trust them.”  — Dilek Onkal, International Journal of Forecasting 38:3 (July-September 2022), p.802.

The words quoted above grabbed my attention and prompted this post. Those of a geekly persuasion, like your blogger, are inclined to think of forecasting as a statistical problem. While that is obviously true, those of a certain age, like your blogger, understand that forecasting is also a social activity and therefore has a large human component.

What Do You Trust?

There is a related dimension of trust: not who do you trust but what do you trust? By this, I mean both data and software.

Trust in Data

Trust in data underpins trust in the forecaster using the data. Most of our customers have their data in an ERP system. This data must be understood as a key corporate asset. For the data to be trustworthy, it must have the “three C’s”, i.e., it must be correct, complete, and current.

Correctness is obviously fundamental. We once had a customer who was implementing a new, strong forecasting process, but found the results completely at odds with their sense of what was happening in the business. It turned out that several of their data streams were incorrect by a factor of two, which is a huge error. Of course, this set back the implementation process until they could identify and correct all the gross errors in their demand data.

There is a less obvious point to be made about correctness. That is, data are random, so what you see now is not likely to be what you see next. Planning production based on the assumption that next week’s demand will be exactly the same as this week’s demand is clearly foolish, but classical formula-based forecasting models like the exponential smoothing mentioned above will project the same number throughout the forecast horizon. This is where scenario-based planning is essential for coping with the inevitable fluctuations in key variables such as customers’ demands and suppliers’ replenishment lead times.

Completeness is the second requirement for data to be trusted. Our software ultimately gets much of its value from exposing the links between operational decisions (e.g., selecting the reorder points governing replenishment of stock) and business-related metrics like inventory costs. Yet often implementation of forecasting software is delayed because item demand information is available someplace, but holding, ordering and/or shortage costs are not.  Or, to cite another recent example, a customer was able to properly size only half their inventory of spares for reparable parts because nobody had been tracking when the other half was breaking down, meaning there was no information on mean time before failure (MTBF), meaning it was not possible to model the breakdown behavior of half the fleet of reparable spares.

Finally, the currency of data matters. As the speed of business increases and company planning cycles drop from a quarterly or monthly tempo to a weekly or daily tempo, it becomes desirable to exploit the agility provided by overnight uploads of daily transactional data into the cloud. This allows high-frequency adjustments of forecasts and/or inventory control parameters for items that experience high volatility and sudden shifts in demand. The fresher the data, the more trustworthy the analysis.

Trust in Demand Forecasting Software

Even with high-quality data, forecasters must still trust the analytical software that processes the data. This trust must extend to both the software itself and to the computational environment in which it functions.

If forecasters used on-premises software, they must rely on their own IT departments to safeguard the data and keep it available for use. If they wish instead to exploit the power of cloud-based analytics, customers must trust their confidential information to their software vendors. Professional-level software, such as ours, justifies customers’ trust through SOC 2 certification. SOC 2 certification was developed by the American Institute of CPAs and defines criteria for managing customer data based on five “trust service principles”—security, availability, processing integrity, confidentiality, and privacy.

What about the software itself? What is needed to make it trustworthy? The main criteria here are the correctness of algorithms and functional reliability. If the vendor has a professional program development process, there will be little chance that the software ends up computing the wrong numbers because of a programming error. And if the vendor has a rigorous quality assurance process, there will be little chance that the software will crash just when the forecaster is on deadline or must deal with a pop-up analysis for a special situation.

Summary

To be useful, forecasters and their forecasts must be trusted by decision-makers. That trust depends on characteristics of forecasters and their processes and communication. It also depends on the quality of the data and software used in creating the forecasts.

 

Read the 1st part of this Blog “Who do you Trust” here: https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-1-who/