De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Een voorraadbeheerder die verantwoordelijk is voor 10.000 artikelen heeft elke dag 10.000 dingen om zich druk over te maken. Verdubbel dat voor iemand die verantwoordelijk is voor 20.000 items.

In de drukte van het bedrijfsleven komen routinematige beslissingen vaak op de tweede plaats na brandbestrijding: omgaan met haperingen van leveranciers, het rechtzetten van papierwerkfouten, herstellen van die botsing tussen een vrachtwagen en het laadperron.

In de tussentijd echter van uw bedrijf geaccumuleerd voorraadbeheerbeleid blijven doen wat ze doen, zelfs als ze geld lekken. Een goede manager zal tijd vrijmaken om naar het 'achtergrondgeluid' te luisteren, zelfs als hij of zij luid gekraak hoort in het magazijn.

Overweeg de huidige instellingen voor uw voorraadbeheerparameters (bijv. bestelpunten en bestelhoeveelheden). Het is gemakkelijk om dit te zien als "vuur en vergeet" beslissingen. Maar deze instellingen stapelen zich meestal op in de loop van de tijd en vormen uiteindelijk een mengelmoes van vergeten beoordelingsvragen die mogelijk niet goed zijn afgestemd op uw huidige besturingsomgeving. Veel factoren kunnen afwijken van hun eerdere niveaus, zoals doorlooptijden van leveranciers, bestelkosten of gemiddelde vraag naar artikelen. Deze veranderingen kunnen onzichtbare compromissen afdwingen die niet in uw voordeel zijn.

Het is verstandig om deze besturingsinstellingen af en toe opnieuw te bekijken om te zien of het mogelijk is om uw dagelijkse activiteiten af te stemmen op de huidige realiteit. Het zou voor een drukke manager natuurlijk ondoenlijk zijn om handmatig de effecten te berekenen van het wijzigen van de besturingsinstellingen op bijvoorbeeld 10.000 artikelen. Maar dat is waar moderne software voor voorraadoptimalisatie en vraagplanning voor is: het mogelijk maken van grootschalige analytische taken. Met dergelijke software kunt u automatisch nieuwe informatie verwerken en aanpassingen op schaal berekenen. Het resultaat zal zijn gemakkelijke overwinningen – waarvan er vele anders niet zouden worden gerealiseerd. En als u hier en daar een beetje bespaart, levert dat aanzienlijke bedragen op als u duizenden items beheert.

Overweeg dit voorbeeld. Bedrijf A maakt gebruik van een periodiek inventarisatiesysteem. Elke 30 dagen controleren ze de voorhanden voorraad van al hun artikelen en beslissen hoeveel aanvullingsvoorraad ze willen bestellen. Elk van hun 10.000 artikelen heeft een bepaald Order-Up-To-niveau dat de omvang van hun aanvullingsorders bepaalt.

Stel dat artikel 1234 een Order-Up-To-niveau van 74 heeft, bepaald door rekening te houden met de gemiddelde artikelvraag van 1,0 eenheden per dag, een gemiddelde doorlooptijd voor aanvulling van 8 dagen en een beoogde opvullingsgraad van 90% voor dit artikel . De keuze van 74 als order-up-to-niveau zorgt ervoor dat bedrijf A zijn 90%-doelstelling voor het opvullingspercentage voor artikel 1234 kan halen, maar het resulteert ook in een gemiddeld voorraadniveau van 40 eenheden. Bij $1.500 per eenheid vertegenwoordigt dit artikel alleen al $45.000 aan voorraadinvesteringen.

Stel nu dat de gemiddelde vraag naar artikelen zou stijgen van 1,0 naar 1,2 eenheden/dag. Zonder dat iemand het merkt, zou het opvullingspercentage voor artikel 1234 dalen tot 82%!

Stel nu dat de vraag in de andere richting zou verschuiven en zou dalen tot 0,8 eenheden/dag. Net als bij de toename van de gemiddelde vraag van 1,0 naar 1,2 eenheden/dag, is dit soort verandering moeilijk te zien als je naar een perceel kijkt (zie figuur 1), maar het kan een aanzienlijke operationele impact hebben. In dit geval zou het opvullingspercentage zoomen naar een genereuze 96%, maar de beschikbare voorraad zou ook zoomen: van 40 eenheden naar 46. Die zes extra eenheden zouden $9.000 extra voorraad vertegenwoordigen.

Figuur 1: Voorbeelden van dagelijkse vraag met twee verschillende gemiddelde waarden. Het verschil in vraag is met het blote oog niet waarneembaar, maar als er geen rekening mee wordt gehouden, heeft dit een grote operationele impact op voorraaduitgaven en serviceniveaus

Stel je nu voor dat vergelijkbare kleine verschuivingen onopgemerkt plaatsvinden in een volledige vloot van 10.000 inventarisitems. De totale financiële impact van al dergelijke verschuivingen zou voldoende zijn om op de radar van een CFO te komen. Proberen deze turbulentie de baas te blijven, zou onmogelijk zijn als u dit handmatig zou doen, maar moderne voorraadoptimalisatiesoftware kan de juiste aanpassingen automatisch berekenen zo vaak als uw bedrijf aankan, en zelfs dagelijks helpen om substantiële verbeteringen in serviceniveaus en voorraadefficiëntie te realiseren, terwijl de voorraad wordt verlaagd en bewaarkosten!

 

Laat een reactie achter

gerelateerde berichten

Verward over AI en Machine Learning?

Verward over AI en Machine Learning?

Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

Hoe u voorraadvereisten kunt voorspellen

Hoe u voorraadvereisten kunt voorspellen

Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag.

recente berichten

  • artificial intelligence ai and machine learning inventory managementVerward over AI en Machine Learning?
    Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn. […]
  • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
    In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
  • Balans,Concept,Met,Chroom,Ballen,software voor voorraadoptimalisatieHoe u voorraadvereisten kunt voorspellen
    Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag. […]
  • Demand Planning tweelingbroers met prognosetoolsZes best practices voor vraagplanning waar u twee keer over moet nadenken
    Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen. […]
  • Mannelijke magazijnmedewerker met 99 Service Level palletUitleggen wat 'serviceniveau' betekent in uw voorraadoptimalisatiesoftware
    Navigeren door de fijne kneepjes van voorraadaanbevelingen kan vaak leiden tot vragen over de juistheid en betekenis ervan. Een recent onderzoek van een van onze klanten leidde tot een verhelderende discussie over de nuances van serviceniveaus en bestelpunten. Tijdens een teamvergadering hebben we ongebruikelijke hiaten vastgesteld tussen onze Smart-suggested reorder points (ROP) op een 99%-serviceniveau en de huidige ROP van de klant. In dit bericht ontrafelen we het concept van een "99%-serviceniveau" en de implicaties ervan voor voorraadoptimalisatie, waarbij we licht werpen op hoe timing en onmiddellijke voorraadbeschikbaarheid een cruciale rol spelen bij het voldoen aan de verwachtingen van de klant en concurrerend blijven in diverse industrieën. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]
    • professionele technicus-ingenieur die reserveonderdelen plant in industriële productiefabriek,Bereid uw reserveonderdelenplanning voor op onverwachte schokken
      In het onvoorspelbare zakenklimaat van vandaag moeten we ons zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken. […]