De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Er is een oud grapje: "Er zijn twee soorten mensen - zij die geloven dat er twee soorten mensen zijn, en zij die dat niet doen." We kunnen die grap aanpassen: "Er zijn twee soorten mensen - zij die weten dat er drie soorten supply chain-analyse zijn, en zij die deze blog nog niet hebben gelezen."

De drie typen supply chain-analyse zijn 'beschrijvend', 'voorspellend' en 'voorschrijvend'. Elk speelt een andere rol bij het helpen bij het beheren van uw voorraad. Met moderne supply chain-software kunt u alle drie benutten.

Beschrijvende analyses

Beschrijvende analyses zijn het spul van dashboards. Ze vertellen je "wat er nu gebeurt." In deze categorie zijn samenvattingscijfers opgenomen zoals dollars die momenteel in voorraad zijn geïnvesteerd, het huidige niveau van klantenservice en opvullingspercentage, en gemiddelde doorlooptijden van leveranciers. Deze statistieken zijn handig om uw activiteiten bij te houden, vooral wanneer u wijzigingen daarin van maand tot maand bijhoudt. U zult elke dag op hen vertrouwen. Ze vereisen nauwkeurige bedrijfsdatabases, statistisch verwerkt.

Voorspellende analyse

Voorspellende analyses manifesteren zich meestal als prognoses van de vraag, vaak opgesplitst per product en locatie en soms ook per klant. Deze statistieken geven vroegtijdige waarschuwingen, zodat u productie, personeel en inkoop van grondstoffen kunt versnellen om aan de vraag te voldoen. Ze bieden ook voorspellingen van het effect van wijzigingen in het bedrijfsbeleid, bijvoorbeeld: wat gebeurt er als we onze bestelhoeveelheid voor product X verhogen van 20 naar 25 eenheden? U kunt periodiek, misschien wekelijks of maandelijks, vertrouwen op Predictive Analytics wanneer u opkijkt van wat er nu gebeurt om te zien wat er daarna zal gebeuren. Predictive Analytics gebruikt beschrijvende analyse als basis, maar voegt meer mogelijkheden toe. Predictive Analytics voor vraagprognoses vereist geavanceerde statistische verwerking om kenmerken van de productvraag zoals trend, seizoensinvloeden en verandering van regime. Predictive Analytics voor voorraadbeheer gebruikt prognoses van de vraag als invoer in modellen van de werking van voorraadbeleid, die op hun beurt schattingen geven van belangrijke prestatiestatistieken zoals serviceniveaus, opvullingspercentages, en werkingskosten.

Prescriptieve analyses

Prescriptieve analyses gaan niet over wat er nu gebeurt of wat er daarna gaat gebeuren, maar over wat u vervolgens zou moeten doen, dwz ze bevelen beslissingen aan die gericht zijn op het maximaliseren van de prestaties van het inventarisatiesysteem. U kunt op Prescriptive Analytics vertrouwen om uw gehele voorraadbeleid zo goed mogelijk vorm te geven. Prescriptive Analytics gebruikt Predictive Analytics als basis en voegt vervolgens optimalisatiemogelijkheden toe. Prescriptive Analytics-software kan bijvoorbeeld automatisch de beste keuzes maken voor toekomstige waarden van min's en max's voor duizenden inventarisitems. Hier kan 'beste' de waarde van Min en Max voor elk artikel betekenen die de bedrijfskosten minimaliseert (de som van kosten voor vasthouden, bestellen en tekorten) terwijl een 90%-minimum voor het opvullingspercentage van artikelen wordt gehandhaafd.

Voorbeeld

Onderstaande figuur laat zien hoe supply chain analytics de voorraadbeheerder kan helpen. De kolommen tonen drie voorspelde Key Performance Indicators (KPI's): serviceniveau, voorraadinvestering en bedrijfskosten (holdingkosten + bestelkosten + tekortkosten).

 Afbeelding 1: de drie soorten analyses die worden gebruikt om planningsscenario's te evalueren

De rijen tonen vier alternatieve voorraadbeleidslijnen, uitgedrukt als scenario's. Het “Live” scenario rapporteert over de waarden van de KPI's op 1 juli 2018. Het “99% All” scenario wijzigt het huidige beleid door het serviceniveau van alle artikelen te verhogen naar 99%. Het scenario "75 verdieping/99 plafond" verhoogt serviceniveaus die te laag zijn tot 75% en verlaagt zeer hoge (dwz dure) serviceniveaus tot 95%. Het scenario "Optimalisatie" schrijft artikelspecifieke serviceniveaus voor die de totale bedrijfskosten minimaliseren.

Het scenario “Live 01-07-2018” is een voorbeeld van beschrijvende analyse. Het toont de huidige basislijnprestaties. De software stelt de gebruiker vervolgens in staat wijzigingen in het voorraadbeleid uit te proberen door nieuwe "Wat als"-scenario's te creëren die vervolgens kunnen worden omgezet in benoemde scenario's voor verdere overweging. De volgende twee scenario's zijn voorbeelden van Predictive Analytics. Ze beoordelen allebei de gevolgen van hun aanbevolen beleid voor voorraadbeheer, dwz de aanbevolen waarden van Min en Max voor alle artikelen. Het scenario 'Optimalisatie' is een voorbeeld van Prescriptive Analytics omdat het een beste compromisbeleid aanbeveelt.

Overweeg hoe de drie alternatieve scenario's zich verhouden tot het "Live" basisscenario. Het scenario "99% All" verhoogt de beschikbaarheidsstatistieken van artikelen, waardoor het serviceniveau stijgt van 88% naar 99%. Hierdoor neemt de totale inventarisinvestering echter toe van $3 miljoen tot ongeveer $4 miljoen. Het scenario '75 vloer/99 plafond' daarentegen verhoogt zowel het serviceniveau als vermindert het contante geld dat vastzit in de voorraad met ongeveer $300.000. Ten slotte bereikt het scenario "Optimalisatie" een 80%-serviceniveau, een verlaging ten opzichte van de huidige 88%, maar het verlaagt de voorraadwaarde met meer dan $2 miljoen en verlaagt de bedrijfskosten met meer dan $400.000 per jaar. Van hieruit konden managers verdere opties uitproberen, zoals het teruggeven van een deel van de $2 miljoen besparingen om een hoger gemiddeld serviceniveau te bereiken.

Overzicht

Moderne softwarepakketten voor voorraadplanning en voorraadoptimalisatie zouden drie soorten supply chain-analyses moeten bieden: beschrijvend, voorspellend en prescriptief. Dankzij hun combinatie kunnen voorraadbeheerders hun activiteiten volgen (Beschrijvend), voorspellen waar hun activiteiten in de toekomst zullen zijn (Predictive) en hun voorraadbeleid optimaliseren om te anticiperen op toekomstige omstandigheden (Prescriptief).

 

 

Laat een reactie achter

gerelateerde berichten

Verward over AI en Machine Learning?

Verward over AI en Machine Learning?

Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

recente berichten

  • What is Inventory Control Planning Management Optimization DictionaryWhat is Inventory Planning? A Brief Dictionary of Inventory-Related Terms
    People involved in the supply chain are likely to have questions about various inventory terms and methods used in their jobs. This note may help by explaining these terms and showing how they relate. […]
  • artificial intelligence ai and machine learning inventory managementVerward over AI en Machine Learning?
    Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn. […]
  • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
    In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
  • Balans,Concept,Met,Chroom,Ballen,software voor voorraadoptimalisatieHoe u voorraadvereisten kunt voorspellen
    Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag. […]
  • Demand Planning tweelingbroers met prognosetoolsZes best practices voor vraagplanning waar u twee keer over moet nadenken
    Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]
    • professionele technicus-ingenieur die reserveonderdelen plant in industriële productiefabriek,Bereid uw reserveonderdelenplanning voor op onverwachte schokken
      In het onvoorspelbare zakenklimaat van vandaag moeten we ons zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken. […]