De slimme voorspeller

  Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Nee, niet dat soort regimewisseling: niets over kruisraketten en stealth-bommenwerpers. En nee, we hebben het niet over het andere soort regimeverandering dat dichter bij huis komt: het door elkaar schuiven van de C-Suite bij uw bedrijf.

"Regimeverandering" heeft een derde betekenis die relevant is voor uw beroep als vraagplanner of voorraadbeheerder. Voor onderzoekers in economie en financiën betekent regimeverandering plotselinge verschuivingen in het karakter van een tijdreeks van willekeurige waarnemingen. De willekeurige tijdreeks in kwestie is hier de volgorde van dagelijkse (of wekelijkse of maandelijkse) vraagtellingen voor uw producten en voorraaditems.

De meeste prognosesoftware gebruikt statistische algoritmen om de historische vraag te verwerken. Het kan extra stappen toevoegen, zoals het opnemen van veldinformatie van verkopers, maar alles begint met de vraaggeschiedenis van welk item u ook moet beheren.

De vraag die opkomt bij regime change is: welke gegevens gebruikt u? Het simpele antwoord is "Alles", want dat leidt tot de meest nauwkeurige voorspellingen - maar alleen als uw datawereld stabiel is. Als uw datawereld turbulent is, betekent het gebruik van alle data dat u prognoses baseert op vervlogen omstandigheden. Op zijn beurt, het invoeren van verouderde gegevens in uw voorspellende algoritmen leidt onvermijdelijk tot verminderde prognosenauwkeurigheid.

Merk op dat omgaan met regimeverandering niet hetzelfde is als omgaan met uitschieters. Uitschieters zijn meestal eenmalige uitzonderingen die worden veroorzaakt door voorbijgaande gebeurtenissen, zoals een knik in uw toeleveringsketen veroorzaakt door een enorme sneeuwstorm die alle doorvoerpaden verstikt. Regime change houdt daarentegen aan over een langere periode en kan daarom meer schade toebrengen aan uw prognoses. Hier is een analogie: uitschieters gaan over het weer en regimeverandering gaat over het klimaat.

De meest ingrijpende vormen van regimeverandering zijn existentieel. Figuur 1 toont een voorbeeld van een existentiële verandering: er was lange tijd helemaal geen vraag, toen was er opeens vraag. Als u geen vraag naar een artikel had omdat het niet bestond, maar u behoudt nul vraagwaarden in uw database, en vervolgens gaat het artikel live en heeft u verkopen, dan is de overgang van niets naar iets een extreme verandering van regime. Het opnemen van al die nulvraagwaarden van vóór "Dag één" zal de statistische prognoses zeker naar beneden vertekenen waar ze zouden moeten zijn. Hetzelfde gebeurt als u een product doodt maar geen vraag blijft registreren: het opnemen van al die recente nullen verslechtert uw vraagprognoses.

In principe zou een zorgvuldige administratie deze problemen moeten elimineren. U dient alleen zinvolle nulwaarden op te nemen. Als je een nieuw item hebt, begin dan met opnemen wanneer het live gaat. Als je geen vraag meer hebt naar een item en er ook geen verwacht, verwijder het dan uit je database, of voorspel in ieder geval nul vraag.

Helaas is er een verschil tussen principe en praktijk. We zien veel gevallen waarin de gegevensrecords voor zowel nieuwe als slapende items niet correct worden bijgehouden, met "nepnullen" verward met "echte nullen". Dit probleem is niet noodzakelijkerwijs het gevolg van incompetentie: meestal is het een bijproduct van de omvang van het probleem, waarbij te weinig mensen proberen om te veel items bij te houden.

Deze existentiële regimeveranderingen zijn relatief gemakkelijk te hanteren in vergelijking met meer subtiele vormen, die meer items lijken te treffen. Figuur 2 toont twee voorbeelden van regimeveranderingen in een patroon van lopende verkopen. Er zijn een aantal factoren die de vraag naar een artikel kunnen veranderen: prestaties van het verkooppersoneel, marketing- en reclame-inspanningen, acties van concurrenten en leveranciers, nieuwe klanten die ontstaan of oude klanten die verdwijnen, enz. Als de vraag naar een artikel gestaag doorgaat 1 eenheid per dag maar ineens verdubbelt (of vice versa), dat is een verandering van regime. In de nieuwe wereldorde is de vraag 2 eenheden/dag en de prognoses zouden dat moeten weerspiegelen. In plaats daarvan zullen algoritmen voor statistische prognoses te weinig vraag voorspellen als ze alle gegevens krijgen, ook die van vóór de regimewisseling.

Hoe bescherm je jezelf tegen regimeverandering? Het antwoord is hetzelfde voor de wreedste dictator of de meest onschuldige eisenplanner: Intelligentie. En omdat er veel bedreigingen zijn, kan de intelligentie het beste worden geautomatiseerd. Moderne softwaresystemen hebben de mogelijkheid om tienduizenden items te screenen op tekenen van regimeverandering. Vervolgens kan de software uw aandacht vestigen op de problematische items en u vragen aan te geven welke recente gegevens u in berekeningen wilt gebruiken. Of de software kan automatisch detecteren en corrigeren voor verandering van regime, snel werkend op een schaal die elke drukbezette persoon die "met de hand" werkt gemakkelijk zou verslaan.

 

Laat een reactie achter

gerelateerde berichten

Hebben uw statistische prognoses last van het wiggle-effect?

Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

Hoe om te gaan met statistische prognoses van nul

Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

recente berichten

  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
  • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]