De slimme voorspeller

  Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Nee, niet dat soort regimewisseling: niets over kruisraketten en stealth-bommenwerpers. En nee, we hebben het niet over het andere soort regimeverandering dat dichter bij huis komt: het door elkaar schuiven van de C-Suite bij uw bedrijf.

"Regimeverandering" heeft een derde betekenis die relevant is voor uw beroep als vraagplanner of voorraadbeheerder. Voor onderzoekers in economie en financiën betekent regimeverandering plotselinge verschuivingen in het karakter van een tijdreeks van willekeurige waarnemingen. De willekeurige tijdreeks in kwestie is hier de volgorde van dagelijkse (of wekelijkse of maandelijkse) vraagtellingen voor uw producten en voorraaditems.

De meeste prognosesoftware gebruikt statistische algoritmen om de historische vraag te verwerken. Het kan extra stappen toevoegen, zoals het opnemen van veldinformatie van verkopers, maar alles begint met de vraaggeschiedenis van welk item u ook moet beheren.

De vraag die opkomt bij regime change is: welke gegevens gebruikt u? Het simpele antwoord is "Alles", want dat leidt tot de meest nauwkeurige voorspellingen - maar alleen als uw datawereld stabiel is. Als uw datawereld turbulent is, betekent het gebruik van alle data dat u prognoses baseert op vervlogen omstandigheden. Op zijn beurt, het invoeren van verouderde gegevens in uw voorspellende algoritmen leidt onvermijdelijk tot verminderde prognosenauwkeurigheid.

Merk op dat omgaan met regimeverandering niet hetzelfde is als omgaan met uitschieters. Uitschieters zijn meestal eenmalige uitzonderingen die worden veroorzaakt door voorbijgaande gebeurtenissen, zoals een knik in uw toeleveringsketen veroorzaakt door een enorme sneeuwstorm die alle doorvoerpaden verstikt. Regime change houdt daarentegen aan over een langere periode en kan daarom meer schade toebrengen aan uw prognoses. Hier is een analogie: uitschieters gaan over het weer en regimeverandering gaat over het klimaat.

De meest ingrijpende vormen van regimeverandering zijn existentieel. Figuur 1 toont een voorbeeld van een existentiële verandering: er was lange tijd helemaal geen vraag, toen was er opeens vraag. Als u geen vraag naar een artikel had omdat het niet bestond, maar u behoudt nul vraagwaarden in uw database, en vervolgens gaat het artikel live en heeft u verkopen, dan is de overgang van niets naar iets een extreme verandering van regime. Het opnemen van al die nulvraagwaarden van vóór "Dag één" zal de statistische prognoses zeker naar beneden vertekenen waar ze zouden moeten zijn. Hetzelfde gebeurt als u een product doodt maar geen vraag blijft registreren: het opnemen van al die recente nullen verslechtert uw vraagprognoses.

In principe zou een zorgvuldige administratie deze problemen moeten elimineren. U dient alleen zinvolle nulwaarden op te nemen. Als je een nieuw item hebt, begin dan met opnemen wanneer het live gaat. Als je geen vraag meer hebt naar een item en er ook geen verwacht, verwijder het dan uit je database, of voorspel in ieder geval nul vraag.

Helaas is er een verschil tussen principe en praktijk. We zien veel gevallen waarin de gegevensrecords voor zowel nieuwe als slapende items niet correct worden bijgehouden, met "nepnullen" verward met "echte nullen". Dit probleem is niet noodzakelijkerwijs het gevolg van incompetentie: meestal is het een bijproduct van de omvang van het probleem, waarbij te weinig mensen proberen om te veel items bij te houden.

Deze existentiële regimeveranderingen zijn relatief gemakkelijk te hanteren in vergelijking met meer subtiele vormen, die meer items lijken te treffen. Figuur 2 toont twee voorbeelden van regimeveranderingen in een patroon van lopende verkopen. Er zijn een aantal factoren die de vraag naar een artikel kunnen veranderen: prestaties van het verkooppersoneel, marketing- en reclame-inspanningen, acties van concurrenten en leveranciers, nieuwe klanten die ontstaan of oude klanten die verdwijnen, enz. Als de vraag naar een artikel gestaag doorgaat 1 eenheid per dag maar ineens verdubbelt (of vice versa), dat is een verandering van regime. In de nieuwe wereldorde is de vraag 2 eenheden/dag en de prognoses zouden dat moeten weerspiegelen. In plaats daarvan zullen algoritmen voor statistische prognoses te weinig vraag voorspellen als ze alle gegevens krijgen, ook die van vóór de regimewisseling.

Hoe bescherm je jezelf tegen regimeverandering? Het antwoord is hetzelfde voor de wreedste dictator of de meest onschuldige eisenplanner: Intelligentie. En omdat er veel bedreigingen zijn, kan de intelligentie het beste worden geautomatiseerd. Moderne softwaresystemen hebben de mogelijkheid om tienduizenden items te screenen op tekenen van regimeverandering. Vervolgens kan de software uw aandacht vestigen op de problematische items en u vragen aan te geven welke recente gegevens u in berekeningen wilt gebruiken. Of de software kan automatisch detecteren en corrigeren voor verandering van regime, snel werkend op een schaal die elke drukbezette persoon die "met de hand" werkt gemakkelijk zou verslaan.

 

Laat een reactie achter

gerelateerde berichten

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies.

Je moet samenwerken met de algoritmen

Je moet samenwerken met de algoritmen

This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software.

recente berichten

  • Direct naar het brein van de baas - InventarisanalyseRechtstreeks naar het brein van de baas – voorraadanalyse en rapportage
    In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies. […]
  • U moet samenwerken met de algoritmen voor voorraadbeheerJe moet samenwerken met de algoritmen
    This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software. […]
  • Heroverweging van de nauwkeurigheid van prognoses, een verschuiving van nauwkeurigheid naar foutstatistiekenBeantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken
    Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie. […]
  • Het gebruik van belangrijke prestatievoorspellingen om het voorraadbeleid te plannen
    Ik kan me niet voorstellen dat ik een voorraadplanner ben op het gebied van reserveonderdelen, distributie of productie en dat ik veiligheidsvoorraden, bestelpunten en bestelsuggesties moet creëren zonder gebruik te maken van belangrijke prestatievoorspellingen van serviceniveaus, opvullingspercentages en voorraadkosten. […]
  • Elk voorspellingsmodel is goed waarvoor het is ontworpenElk voorspellingsmodel is goed waarvoor het is ontworpen
    Met zoveel hype rond nieuwe Machine Learning (ML) en probabilistische voorspellingsmethoden lijken de traditionele “extrapolatieve” of “tijdreeksen” statistische voorspellingsmethoden de koude schouder te krijgen. Het is echter de moeite waard om te onthouden dat deze traditionele technieken (zoals enkele en dubbele exponentiële afvlakking, lineaire en eenvoudige voortschrijdende middeling, en Winters-modellen voor seizoensitems) vaak behoorlijk goed werken voor gegevens met een groter volume. Elke methode is goed voor waarvoor deze is ontworpen. Pas ze allemaal op de juiste manier toe, bijvoorbeeld: neem geen mes mee naar een vuurgevecht en gebruik geen drilboor als een eenvoudige handhamer voldoende is. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]