De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

In een vorige postbesprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

Als u de termen herziet, bedenk dan dat "serviceniveau" de waarschijnlijkheid is van het niet bevoorraden terwijl u wacht op een aanvullingsorder, terwijl "vulpercentage" het percentage van de vraag is waaraan onmiddellijk uit voorraad wordt voldaan. In mijn vorige bericht, "The Scourge of Skewness", heb ik erop gewezen dat een bepaald type vraagverdeling, met een "long right tail", zal leiden tot opvullingspercentages die veel lager kunnen zijn dan de serviceniveaus. Ik heb er ook op gewezen dat soms de enige manier om het opvullingspercentage te verbeteren, is om het beoogde serviceniveau te verhogen tot een ongewoon hoog niveau, wat duur kan zijn.

In dit bericht zal ik kijken naar het oplossen van het probleem in één speciaal geval: scheefheid als gevolg van effectieve verkooppromoties vermengd met "intermitterende vraag". Intermitterende vraag heeft een groot deel van nulwaarden, met willekeurige waarden die niet gelijk zijn aan nul. Succesvolle verkooppromoties, uiteraard positief, hebben een keerzijde: ze kunnen het "vraagsignaal" verwarren met pieken in uw vraaggeschiedenis, en kunnen prognoses en vertekening van veiligheidsvoorraadberekeningen ondermijnen. Wanneer een intermitterende vraag en effectieve verkoopacties de oorzaak zijn van de scheefheid van uw gegevens, bestaan er methoden om het probleem te omzeilen om zowel hogere opvullingspercentages als nauwkeurigere vraagprognoses te bereiken.

Hoe promoties scheefheid vergroten

Succesvolle promoties doen de vraag naar artikelen abrupt stijgen. Dit creëert anomalieën, of "uitschieters", die bijdragen aan het vormen van een scheve verdeling. Als we weten wanneer er in het verleden promoties hebben plaatsgevonden, kunnen we het record van de eerdere vraag van een item aanpassen. We produceren een alternatieve vraaggeschiedenis alsof er geen promoties zijn geweest, door de uitschieters te vervangen door waarden die meer representatief zijn voor het "natuurlijke" vraagniveau. Deze aanpassingen verminderen de scheefheid van de vraag. Verminderde scheefheid kan leiden tot aanzienlijke verlagingen van zowel verwachte prognoses als veiligheidsvoorraden, die bij elkaar optellen om bestelpunten te vormen.

Succesvolle promoties zullen waarschijnlijk worden herhaald. Wanneer dat gebeurt, kunnen de promotie-effecten worden toegevoegd aan vraagprognoses om hun nauwkeurigheid te vergroten. Het effect van toekomstige promoties op voorraadbeheer zal zijn dat het risico van stockouts toeneemt, dus een verstandige reactie is om op operationeel niveau te werken aan het opbouwen van tijdelijke voorraad, in een hoeveelheid die is afgestemd op de geschatte impact van eerdere promoties op de betrokken artikelen.

 

Gebeurtenismodellering gebruiken om vraagprognoses te verbeteren

Het is mogelijk om de impact van soortgelijke evenementen te modelleren en dit toe te passen op geplande evenementen in de toekomst. Als u dit doet, kunt u uw prognose op twee manieren verbeteren: door de vraagschok te projecteren die u verwacht van een gepland evenement; en het rationaliseren van de pieken in het verleden die werden veroorzaakt door gebeurtenissen, waardoor uw basisactiviteit zichtbaarder en nauwkeuriger voorspelbaar wordt. We doen dit veel in SmartForecasts, dus sta me toe onze ervaring daar te gebruiken om u te laten zien wat ik bedoel.

Event Modeling omvat de volgende stappen:
• Automatische inschatting van de impact van eerdere promoties (wat op zich al een nuttig resultaat is).
• Historische vraag aanpassen om het effect van promoties statistisch te verwijderen.
• Promotie-vrije prognoses maken.
• Het herzien van de prognoses voor eventuele toekomstige perioden waarin promoties zijn gepland.

We noemen dit type analyse “Promo forecasting”. We gebruiken het woord "promoties" om te beschrijven wat u zelf doet om uw resultaten te verbeteren. We gebruiken 'gebeurtenissen' om te beschrijven wat de wereld met u doet, meestal in uw nadeel; voorbeelden zijn stakingen, stroomuitval, magazijnbranden en andere ongelukkige gebeurtenissen.

Om te begrijpen hoe Event Modeling u kan helpen om te gaan met scheefheid bij het doen van vraagprognoses voor artikelen met een hoog volume, bekijkt u figuren 1-3.

Figuur 1 laat zien dat het vraagpatroon van dit artikel duidelijk seizoensgebonden is en dat de voorspelling zowel seizoensgebonden als "strak" is, wat betekent dat het voorspelde onzekerheidsinterval ("foutmarge", weergegeven in cyaankleurige lijnen) erg smal is.

Afbeelding 2 toont een alternatieve geschiedenis waarin een promotie in juni 2014 het gebruikelijke seizoensdieptepunt van juni-verkopen omkeerde. Dit vraagpatroon werd voorspeld met behulp van het automatische voorspellingstoernooi in SmartForecasts, zoals in afbeelding 1. Deze keer vervormde de promotie het seizoenspatroon voldoende om een ongepaste niet-seizoensgebonden voorspelling te maken, en een die een veel grotere foutmarge heeft.

Ten slotte laat afbeelding 3 zien hoe Promo-prognoses omgaan met hetzelfde gepromote scenario, een seizoensprognose behouden en in de prognose een schatting inbouwen van het effect van een geplande herhalingspromotie in 2015.

Het geval van intermitterende vraag

In afbeelding 1 was het artikel een gereed product met een hoog volume en was de taak vraagprognose. Promomodellering is ook nuttig wanneer het gaat om het instellen van veiligheidsvoorraden en bestelpunten voor artikelen met intermitterende vraag, of het nu gaat om gereed product, componenten of reserveonderdelen. Intermitterende vraag heeft vaak een scheve verdeling die het moeilijk maakt om een hoge artikelbeschikbaarheid te bereiken met een kleine investering in voorraad.

Afbeelding 4 illustreert het probleem dat een succesvolle promotie per ongeluk kan veroorzaken voor voorraadbeheer. Als zo'n piek het gevolg is van de natuurlijke, niet-gestimuleerde vraag, dan is de enige manier om hoge opvullingspercentages te behouden, om veiligheidsvoorraden aan te leggen die groot genoeg zijn om deze willekeurige pieken op te vangen. In dit geval was de grote vraagpiek van 500 stuks in februari 2013 het resultaat van een eenmalige actie.

Rekening houden met promoties om voorraadbeheer te verbeteren

Als u de piek in het bovenstaande voorbeeld onbewust beschouwt als onderdeel van de natuurlijke variabiliteit in de vraag, resulteert dit in een slecht opvullingspercentage. Om een beoogd serviceniveau van bijvoorbeeld 95% met een doorlooptijd van één maand te bereiken, zou een bestelpunt van 38 eenheden nodig zijn, berekend als de som van een verwachte prognose over de aanvultijd van één maand van 21 eenheden aangevuld met een veiligheidsvoorraad van 17 eenheden. Deze investering zou resulteren in een teleurstellend opvullingspercentage van slechts 36%.

Erkennen dat de piek een eenmalige promotie is en de 500 eenheden vervangen door 0 zou natuurlijk een groot verschil maken. Het bestelpunt zou dalen van 38 eenheden naar 31 (de som van een verwachte vraag van 7 eenheden en een veiligheidsvoorraad van 24 eenheden) en het opvullingspercentage zou toenemen tot 94%.

Het is natuurlijk niet oké om vervelende pieken in de vraag gewoon weg te gooien wanneer ze het leven ongemakkelijk maken; er moet een valide 'business story' achter de aanpassing van de historische vraag zitten. Als de piek het gevolg is van een gegevensverwerkingsfout, repareer deze dan in ieder geval. Als de piek samenvalt met een promotie, zal het vervangen van de piek door bijvoorbeeld de mediane vraag (vaak nul, zoals in dit voorbeeld) resulteren in een veel duurzamere voorraadinvestering die nog steeds voldoet aan agressieve prestatiedoelstellingen. Toekomstige promoties van hetzelfde type op hetzelfde artikel zullen wat extra inspanning vergen om zich voor te bereiden op de tijdelijke stijging van de vraag, maar het aanbevolen bestelpunt zal op de lange termijn correct zijn.

Thomas Willemain, PhD, was medeoprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselear Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Het prognoseproces voor besluitvormers

Het prognoseproces voor besluitvormers

In bijna elk bedrijf en elke branche hebben besluitvormers betrouwbare voorspellingen nodig van cruciale variabelen, zoals omzet, inkomsten, vraag naar producten, voorraadniveaus, marktaandeel, kosten en trends in de sector. Er zijn veel soorten mensen die deze voorspellingen maken. Sommigen zijn geavanceerde technische analisten, zoals bedrijfseconomen en statistici. Vele anderen beschouwen forecasting als een belangrijk onderdeel van hun totale werk: algemeen managers, productieplanners, voorraadbeheerspecialisten, financiële analisten, strategische planners, marktonderzoekers en product- en verkoopmanagers. Toch beschouwen anderen zichzelf zelden als voorspellers, maar moeten ze vaak voorspellingen doen op een intuïtieve, oordelende basis.

Maak gebruik van ERP-planningstuklijsten met slimme IP&O om het onvoorspelbare te voorspellen

Maak gebruik van ERP-planningstuklijsten met slimme IP&O om het onvoorspelbare te voorspellen

In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten zal enorm stijgen als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk afzonderlijk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende ERP-oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in ERP, en hoe u hiervan kunt profiteren met Smart Inventory Planning en Optimization (Smart IP&O) om in het licht van deze complexiteit uw vraag voor te blijven.

De voorspelling is belangrijk, maar misschien niet zoals u denkt

De voorspelling is belangrijk, maar misschien niet zoals u denkt

Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja.

recente berichten

  • Slim softwarepartnerschap met Sage voor voorraadoptimalisatie en vraagvoorspellingSmart Software kondigt strategisch partnerschap aan met Sage voor voorraadoptimalisatie en vraagvoorspelling
    Smart Software kondigt vandaag hun strategische samenwerking met Sage aan. Deze samenwerking brengt Smart IP&O (Inventory Planning and Optimization) naar de nieuwste cloud- en on-premises versies van Sage X3, Sage 300 en Sage 100. […]
  • Hoofd-tot-hoofd Welk voorraadbeleid voor serviceonderdelen de beste software isHead to Head: welk voorraadbeleid voor serviceonderdelen is het beste?
    Onze klanten hebben doorgaans gekozen voor één manier om hun voorraad serviceonderdelen te beheren. De professor in mij zou graag willen denken dat het gekozen voorraadbeleid een beredeneerde keuze was uit de weloverwogen alternatieven, maar het is waarschijnlijker dat het gewoon zo is gebeurd. Misschien had de inventarishoncho van lang geleden een favoriet en bleef die keuze hangen. Misschien gebruikte iemand een EAM- of ERP-systeem dat maar één keuze bood. Misschien zijn er enkele gissingen gedaan, gebaseerd op de toenmalige omstandigheden. […]
  • Het prognoseproces voor besluitvormersHet prognoseproces voor besluitvormers
    In bijna elk bedrijf en elke branche hebben besluitvormers betrouwbare voorspellingen nodig van cruciale variabelen, zoals omzet, inkomsten, vraag naar producten, voorraadniveaus, marktaandeel, kosten en trends in de sector. Er zijn veel soorten mensen die deze voorspellingen maken. Sommigen zijn geavanceerde technische analisten, zoals bedrijfseconomen en statistici. Vele anderen beschouwen forecasting als een belangrijk onderdeel van hun totale werk: algemeen managers, productieplanners, voorraadbeheerspecialisten, financiële analisten, strategische planners, marktonderzoekers en product- en verkoopmanagers. Toch beschouwen anderen zichzelf zelden als voorspellers, maar moeten ze vaak voorspellingen doen op een intuïtieve, oordelende basis. […]
  • Succesverhaal: Procon Pumps gebruikt Smart Demand Planner om de bedrijfsvoering draaiende te houdenProcon Pumps gebruikt Smart Demand Planner om de bedrijfsvoering draaiende te houden
    De geavanceerde analyses van het slimme platform en de soepele integratie met het ERP-systeem van Procon leidden tot nauwkeurige prognoses en optimale voorraadniveaus. […]
  • Een vraagvoorspelling doorstaanEen vraagvoorspelling doorstaan
    Voor sommige van onze klanten heeft het weer een grote invloed op de vraag. Extreme weersomstandigheden op de korte termijn, zoals branden, droogtes, hittegolven, enzovoort, kunnen op de korte termijn een aanzienlijke invloed hebben op de vraag. Er zijn twee manieren om het weer mee te nemen in een vraagvoorspelling: indirect en direct. De indirecte route is eenvoudiger met de scenariogebaseerde aanpak van Smart Demand Planner. De directe aanpak vereist een speciaal project op maat dat aanvullende gegevens en handgemaakte modellen vereist. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Vraag naar reserveonderdelen voorspellen-een-ander-perspectief-voor-planning-service-onderdelenDe voorspelling is belangrijk, maar misschien niet zoals u denkt
      Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja. […]
    • Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraadWaarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad
      Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien. […]
    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]