¿Qué hace cuando pronostica un artículo con demanda intermitente, como una pieza de repuesto, con una demanda promedio de menos de una unidad por mes? La mayor parte del tiempo la demanda es cero, pero la parte es significativa en un sentido comercial; no se puede ignorar y se debe pronosticar para asegurarse de tener el stock adecuado.
Tus elecciones tienden a centrarse en algunas opciones:
Opción 1: Redondea a 1 cada mes, por lo que tu pronóstico anual es 12.
Opción 2: Redondee a 0 cada mes, de modo que su pronóstico anual sea 0.
Opción 3: método de pronóstico "igual que el mismo mes del año pasado" para que el pronóstico coincida con el real del año pasado.
Hay desventajas obvias para cada opción y no mucha ventaja para ninguna de ellas. La opción 1 a menudo resulta en un sobre pronóstico significativo. La opción 2 a menudo da como resultado una previsión significativamente inferior a la esperada. La opción 3 da como resultado un pronóstico que casi garantiza que perderá significativamente el real, ya que no es probable que la demanda aumente exactamente en el mismo período. Si DEBE pronosticar el artículo, normalmente recomendaríamos la opción 3, ya que es la respuesta más probable que el resto de la empresa entendería.
Pero una mejor manera es no pronosticarlo en absoluto en el sentido habitual y, en su lugar, utilizar un "punto de reorden predictivo" relacionado con el nivel de servicio deseado. Para calcular un punto de reorden predictivo, puede usar el algoritmo de arranque de Markov patentado de Smart Software para simular todas las demandas posibles que podrían ocurrir durante el tiempo de entrega, luego identifique el punto de reorden que producirá su nivel de servicio objetivo.
Luego, puede configurar su sistema ERP para pedir más cuando el inventario disponible supere el punto de reorden en lugar de cuando se pronostique que llegará a cero (o cualquier reserva de existencias de seguridad que se ingrese).
Esto hace que los pedidos tengan más sentido común sin las suposiciones innecesarias que se requieren para pronosticar una pieza de bajo volumen demandada intermitentemente.
Soluciones de software para la planificación de repuestos
El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.
Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.
Lo que necesita saber sobre la previsión y la planificación de piezas de servicio
Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.