El Blog de Smart

  Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

La demanda intermitente, irregular o desigual, en particular para artículos de baja demanda como servicio y repuestos, es especialmente difícil de predecir con precisión. El pronóstico probabilístico patentado de Smart Software mejora drásticamente precisión del nivel de servicio. Si alguno de estos escenarios se aplica a su empresa, la previsión probabilística le ayudará a mejorar sus resultados.

  • ¿Tiene una demanda intermitente o irregular con picos grandes e infrecuentes que superan muchas veces la demanda promedio?
  • ¿Es difícil obtener información comercial sobre cuándo es probable que la demanda vuelva a aumentar?
  • ¿Pierde oportunidades comerciales porque no puede pronosticar con precisión la demanda y estimar los requisitos de inventario para ciertos productos impredecibles?
  • ¿Está obligado a mantener un inventario de muchos artículos, incluso si se demandan con poca frecuencia, para diferenciarse de la competencia al proporcionar altos niveles de servicio?
  • ¿Tiene que hacer inversiones innecesariamente grandes en inventario para cubrir pedidos inesperados y requisitos de materiales?
  • ¿Tiene que entregar a los clientes de inmediato a pesar de los largos plazos de entrega del proveedor?

Si ha respondido afirmativamente a algunas o todas las preguntas anteriores, no está solo. La demanda intermitente, también conocida como demanda irregular, esporádica, irregular o de movimiento lento, afecta a industrias de todos los tipos y tamaños: sectores de bienes de capital y equipos, automotriz, aviación, transporte público, herramientas industriales, productos químicos especiales, servicios públicos y alta tecnología. por nombrar unos cuantos. Y hace que la previsión y la planificación de la demanda sean extremadamente difíciles. Puede ser mucho más que un dolor de cabeza; puede ser un problema multimillonario, especialmente para las empresas de MRO y otras que administran y distribuyen piezas de repuesto y de servicio.

Identificar datos de demanda intermitente no es difícil. Por lo general, contiene un gran porcentaje de valores cero, con valores distintos de cero mezclados al azar. Pero pocas soluciones de pronóstico han arrojado resultados satisfactorios, incluso en esta era de análisis de Big Data, análisis predictivo, aprendizaje automático e inteligencia artificial.

 

DESCARGAR EL ARTÍCULO

Enfoques tradicionales y su dependencia de una distribución de demanda asumida

Los métodos tradicionales de pronóstico estadístico, como el suavizado exponencial y los promedios móviles, funcionan bien cuando los datos de demanda del producto son normales o uniformes, pero no brindan resultados precisos con datos intermitentes. Muchas herramientas de previsión automatizadas fallan porque funcionan mediante la identificación de patrones en los datos del historial de demanda, como la tendencia y la estacionalidad. Pero con datos de demanda intermitentes, los patrones son especialmente difíciles de reconocer. Estos métodos también tienden a ignorar el papel especial de los valores cero en el análisis y pronóstico de la demanda. Aun así, algunos métodos de pronóstico estadísticos convencionales pueden producir pronósticos creíbles de la demanda. promedio demanda por período. Sin embargo, cuando la demanda es intermitente, un pronóstico de la demanda promedio no es suficiente para la planificación del inventario. Se necesitan estimaciones precisas de toda la distribución (es decir, el conjunto completo) de todos los posibles valores de demanda en el tiempo de entrega. Sin esto, estos métodos producen entradas engañosas para los modelos de control de inventario, con consecuencias costosas.

Collague con engranajes y modelado de pronóstico estadístico

 

Para producir puntos de pedido, niveles de pedido y existencias de seguridad para la planificación del inventario, muchos enfoques de pronóstico se basan en suposiciones sobre la distribución de la demanda y el tiempo de entrega. Algunos suponen que la distribución de probabilidad de la demanda total de un artículo de producto en particular durante un tiempo de entrega (demanda de tiempo de entrega) se parecerá a una curva clásica normal en forma de campana. Otros enfoques pueden basarse en una distribución de Poisson o alguna otra distribución de libro de texto. Con una demanda intermitente, un enfoque único para todos es problemático porque la distribución real a menudo no coincidirá con la distribución supuesta. Cuando esto ocurre, las estimaciones de la reserva de estabilización serán incorrectas. Este es especialmente el caso cuando se gestionan repuestos (Tabla 1).

Para cada artículo con demanda intermitente, no se puede exagerar la importancia de tener un pronóstico preciso de la distribución completa de todos los posibles valores de demanda de tiempo de entrega, no solo un número que represente la demanda promedio o más probable por período. Estos pronósticos son entradas clave para los modelos de control de inventario que recomiendan los procedimientos correctos para el momento y el tamaño de las órdenes de reposición (puntos de reposición y cantidades de órdenes). Son particularmente esenciales en entornos de piezas de repuesto, donde se necesitan para estimar con precisión los requisitos de inventario del nivel de servicio al cliente (por ejemplo, una probabilidad del 95 o 99 por ciento de no agotarse un artículo) para satisfacer la demanda total durante un tiempo de entrega. Los departamentos de planificación de inventario deben estar seguros de que cuando apunten a un nivel de servicio deseado, lo lograrán. Si el modelo de pronóstico produce consistentemente un nivel de servicio diferente al objetivo, el inventario se administrará de manera incorrecta y la confianza en el sistema se erosionará.

Ante este desafío, muchas organizaciones confían en aplicar regla de oro inventadas por el usuario, basados en enfoques para determinar los niveles de existencias o aplicarán ajustes de juicio a sus pronósticos estadísticos, que esperan predecir con mayor precisión la actividad futura en función de la experiencia comercial pasada. Pero también hay varios problemas con estos enfoques.

Los enfoques de regla general ignoran la variabilidad en la demanda y el tiempo de entrega. Tampoco se actualizan por cambios en los patrones de demanda y no brindan información crítica. información de compensación sobre la relación entre los niveles de servicio y los costos de inventario.

La previsión basada en juicios no es factible cuando se trata de grandes cantidades (miles y decenas de miles) de elementos. Además, la mayoría de los pronósticos de juicio proporcionan una estimación de un solo número en lugar de un pronóstico de la distribución completa de los valores de demanda de tiempo de entrega. Finalmente, es fácil predecir inadvertidamente pero incorrectamente una tendencia a la baja (o al alza) en la demanda, según las expectativas, lo que resulta en un inventario insuficiente (o excesivo).

 

¿Cómo funciona la previsión probabilística de la demanda en la práctica?

Aunque la arquitectura completa de esta tecnología incluye características patentadas adicionales, un ejemplo simple del enfoque demuestra la utilidad de la técnica. Consulte la Tabla 1.

hoja de cálculo de artículos de productos demandados intermitentemente

Tabla 1. Valores de demanda mensual para un artículo de pieza de servicio.

Los valores de demanda de 24 meses para un artículo de servicio son típicos de la demanda intermitente. Supongamos que necesita pronósticos de la demanda total de este artículo durante los próximos tres meses porque su proveedor de repuestos necesita tres meses para completar un pedido para reponer el inventario. El enfoque probabilístico es tomar muestras de los 24 valores mensuales, con reemplazo, tres veces, creando un escenario de demanda total durante el tiempo de anticipación de tres meses.

Cómo funciona el nuevo método de previsión de demanda intermitente

Figura 1. Los resultados de 25.000 escenarios.

 

Puede seleccionar al azar los meses 6, 12 y 4, lo que le da valores de demanda de 0, 6 y 3, respectivamente, para una demanda de tiempo de entrega total (en unidades) de 0 + 6 + 3 = 9. Luego repite este proceso , quizás seleccionando aleatoriamente los meses 19, 8 y 14, lo que da una demanda de tiempo de entrega de 0 + 32 + 0 = 32 unidades. Continuando con este proceso, puede crear una imagen estadísticamente rigurosa de la distribución completa de los posibles valores de demanda de tiempo de entrega para este artículo. La Figura 1 muestra los resultados de 25 000 escenarios de este tipo, lo que indica (en este ejemplo) que el valor más probable para la demanda en el tiempo de entrega es cero, pero que la demanda en el tiempo de entrega podría llegar a 70 o más unidades. También refleja la posibilidad de la vida real de que los valores de demanda distintos de cero para el artículo de la pieza que ocurran en el futuro puedan diferir de los que ocurrieron en el pasado.

Con el recursos computacionales de alta velocidad disponibles en la nube hoy, los métodos de pronóstico probabilístico pueden proporcionar pronósticos rápidos y realistas de la demanda total de tiempo de entrega para miles o decenas de miles de artículos de productos con demanda intermitente. Estos pronósticos se pueden ingresar directamente en los modelos de control de inventario para garantizar que haya suficiente inventario disponible para satisfacer la demanda del cliente. Esto también garantiza que no se mantenga más inventario del necesario, lo que minimiza los costos.

 

Un método probado en el campo que funciona

Los clientes que han implementado la tecnología han descubierto que aumenta la precisión del nivel de servicio al cliente y reduce significativamente los costos de inventario.

Bodega o almacenamiento obteniendo optimización de inventario

La operación de almacenamiento de un minorista de hardware a nivel nacional pronosticó los requisitos de inventario para 12,000 SKU con demanda intermitente a niveles de servicio del 95 y 99 por ciento. Los resultados del pronóstico fueron casi 100 por ciento precisos. Con un nivel de servicio del 95 por ciento, el 95,23 por ciento de los artículos no se agotaron (el 95 por ciento hubiera sido perfecto). Con un nivel de servicio del 99 por ciento, el 98,66 por ciento de los artículos no se agotaron (el 99 por ciento hubiera sido perfecto).

La operación de mantenimiento de aeronaves de una empresa global obtuvo resultados de pronóstico de nivel de servicio similares con 6000 SKU. Los posibles ahorros anuales en costos de manejo de inventario se estimaron en $3 millones. La unidad de negocios de posventa de un proveedor de la industria automotriz, dos tercios de cuyos 7000 SKU muestran una demanda altamente intermitente, también proyectó $3 millones en ahorros de costos anuales.

Que el desafío de pronosticar la demanda intermitente de productos se haya cumplido es una buena noticia para los fabricantes, distribuidores y negocios de repuestos/MRO. Con la computación en la nube, el método probabilístico probado en el campo de Smart Software ahora es accesible para quienes no son estadísticos y se puede aplicar a escala a decenas de miles de piezas. Los datos de demanda que alguna vez fueron impredecibles ya no representan un obstáculo para lograr los más altos niveles de servicio al cliente con la menor inversión posible en inventario.

 

Mano colocando piezas para construir una flecha

DESCARGAR EL ARTÍCULO

Deja un comentario

Artículos Relacionados

Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

En este blog, exploramos cómo aprovechar las listas de materiales de Epicor Kinetic Planning con Smart IP&O puede transformar su enfoque de pronóstico en un entorno de fabricación altamente configurable. Descubra cómo Smart, una solución de optimización de inventario y planificación de la demanda basada en IA de vanguardia, puede simplificar las complejidades de predecir la demanda de productos terminados, especialmente cuando se trata de componentes intercambiables. Descubra cómo la planificación de listas de materiales y las técnicas avanzadas de previsión permiten a las empresas anticipar las necesidades de los clientes con mayor precisión, garantizando la eficiencia operativa y manteniéndose a la vanguardia en un mercado competitivo.

La próxima frontera en análisis de la cadena de suministro

La próxima frontera en análisis de la cadena de suministro

Creemos que la vanguardia del análisis de la cadena de suministro es el desarrollo de gemelos digitales de sistemas de inventario. Estos gemelos toman la forma de modelos de eventos discretos que utilizan la simulación Monte Carlo para generar y optimizar toda la gama de riesgos operativos. También afirmamos que nosotros y nuestros colegas de Smart Software hemos desempeñado un papel enorme en la creación de esa vanguardia.

Superar la incertidumbre con tecnología de optimización de servicio e inventario

Superar la incertidumbre con tecnología de optimización de servicio e inventario

En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

Mensajes recientes

  • Simple Inventory Optimization is Good Except When It Isn’t FHDLo simple es bueno, excepto cuando no lo es
    En este blog, dirigimos la conversación hacia el potencial transformador de la tecnología en la gestión de inventario. La discusión se centra en las limitaciones del pensamiento simple en la gestión de procesos de control de inventario y la necesidad de adoptar soluciones de software sistemáticas. […]
  • Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión HDAprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión
    En este blog, exploramos cómo aprovechar las listas de materiales de Epicor Kinetic Planning con Smart IP&O puede transformar su enfoque de pronóstico en un entorno de fabricación altamente configurable. Descubra cómo Smart, una solución de optimización de inventario y planificación de la demanda basada en IA de vanguardia, puede simplificar las complejidades de predecir la demanda de productos terminados, especialmente cuando se trata de componentes intercambiables. Descubra cómo la planificación de listas de materiales y las técnicas avanzadas de previsión permiten a las empresas anticipar las necesidades de los clientes con mayor precisión, garantizando la eficiencia operativa y manteniéndose a la vanguardia en un mercado competitivo. […]
  • Dos redes neuronales de optimización de inventario multiescalón AILa próxima frontera en análisis de la cadena de suministro
    Creemos que la vanguardia del análisis de la cadena de suministro es el desarrollo de gemelos digitales de sistemas de inventario. Estos gemelos toman la forma de modelos de eventos discretos que utilizan la simulación Monte Carlo para generar y optimizar toda la gama de riesgos operativos. También afirmamos que nosotros y nuestros colegas de Smart Software hemos desempeñado un papel enorme en la creación de esa vanguardia. […]
  • INTELIGENTE SE UNE A EPICOREpicor adquiere software inteligente para tecnologías de optimización y planificación de inventario impulsadas por IA
    La adquisición reúne a dos empresas estrechamente alineadas para ayudar a las organizaciones a obtener la información adecuada en el momento adecuado y tomar medidas para maximizar el rendimiento empresarial. . […]
  • Superar la incertidumbre con tecnología de optimización de servicio e inventarioSuperar la incertidumbre con tecnología de optimización de servicio e inventario
    En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de "Optimización probabilística del inventario", se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventario, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Por qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicioPor qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicio
      Las organizaciones MRO existen en una amplia gama de industrias, incluido el transporte público, los servicios eléctricos, las aguas residuales, la energía hidroeléctrica, la aviación y la minería. Para realizar su trabajo, los profesionales de MRO utilizan sistemas de gestión de activos empresariales (EAM) y planificación de recursos empresariales (ERP). Estos sistemas están diseñados para realizar muchos trabajos. Dadas sus características, costo y amplios requisitos de implementación, se supone que los sistemas EAM y ERP pueden hacerlo todo. En esta publicación, resumimos la necesidad de un software complementario que aborde análisis especializados para la optimización del inventario, la previsión y la planificación de piezas de servicio. […]
    • Previsión-de-la-demanda-de-repuestos-una-perspectiva-diferente-para-la-planificación-de-repuestos-de-servicioEl pronóstico importa, pero tal vez no como usted piensa
      Verdadero o falso: El pronóstico no importa para la gestión del inventario de repuestos. A primera vista, esta afirmación parece evidentemente falsa. Después de todo, las previsiones son cruciales para planificar los niveles de existencias, ¿verdad? Depende de lo que entiendas por “previsión”. Si te refieres a un pronóstico de un solo número de la vieja escuela (“la demanda del artículo CX218b será de 3 unidades la próxima semana y de 6 unidades la semana siguiente”), entonces no. Si se amplía el significado de pronóstico para incluir una distribución de probabilidad que tenga en cuenta las incertidumbres tanto de la demanda como de la oferta, entonces sí. […]
    • Por qué las empresas de MRO deberían preocuparse por el exceso de inventarioPor qué las empresas de MRO deberían preocuparse por el exceso de inventario
      ¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo. […]
    • Principales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestosPrincipales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestos
      En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]