The Importance of Clear Service Level Definitions in Inventory Management

 

Inventory optimization software that supports what-if analysis will expose the tradeoff of stockouts vs. excess costs of varying service level targets. But first it is important to identify how “service levels” is interpreted, measured, and reported. This will avoid miscommunication and the false sense of security that can develop when less stringent definitions are used.  Clearly defining how service level is calculated puts all stakeholders on the same page. This facilitates better decision-making.

There are many differences in what companies mean when they cite their “service levels.”  This can vary from company to company and even from department to department within a company.  Here are two examples:

 

  1. Service level measured “from the shelf” vs. a customer-quoted lead time.
    Service level measured “from the shelf” means the percentage of units ordered that are immediately available from stock. However, when a customer places an order, it is often not shipped immediately. Customer service or sales will quote when the order will be shipped. If the customer is OK with the promised ship date and the order is shipped by that date, then service level is considered to have been met.  Service levels will clearly be higher when calculated over a customer quoted lead time vs. “from the shelf.”
  1. Service level measured over fixed vs. variable customer quoted lead time.
    High service levels are often skewed because customer-quoted lead times are later adjusted to allow nearly every order to be filled “on time and in full.” This happens when the initial lead time can’t be met, but the customer agrees to take the order later, and the customer quoted lead time field that is used to track service level is adjusted by sales or customer service.

Clarifying how “service levels” are defined, measured, and reported is essential for aligning organizations and enhancing decision-making, resulting in more effective inventory management practices.

 

Los métodos de previsión

​El software de planificación de la demanda y pronóstico estadístico desempeña un papel fundamental en la gestión empresarial eficaz al incorporar funciones que mejoran significativamente la precisión de los pronósticos. Un aspecto clave implica la utilización de modelos extrapolativos o basados ​​en suavizado, que permiten a las empresas hacer predicciones rápidamente basadas únicamente en datos históricos. Esta base basada en el desempeño pasado es crucial para comprender tendencias y patrones, especialmente en variables como las ventas o la demanda de productos. El software de pronóstico va más allá del mero análisis de datos al permitir combinar el juicio profesional con pronósticos estadísticos, reconociendo que el pronóstico no es un proceso único para todos. Esta flexibilidad permite a las empresas incorporar conocimientos humanos y de la industria en el modelo de pronóstico, lo que garantiza una predicción más matizada y precisa.

Funciones como pronosticar múltiples artículos como grupo, considerar la demanda impulsada por la promoción y manejar patrones de demanda intermitentes son capacidades esenciales para las empresas que manejan carteras de productos diversas y condiciones de mercado dinámicas. La implementación adecuada de estas aplicaciones brinda a las empresas herramientas de pronóstico versátiles, lo que contribuye significativamente a la toma de decisiones informadas y la eficiencia operativa.

Modelos extrapolativos

Nuestras soluciones de pronóstico de la demanda admiten una variedad de enfoques de pronóstico, incluidos modelos de pronóstico extrapolativos o basados en suavizamiento, como el suavizado exponencial y los promedios móviles. La filosofía detrás de estos modelos es simple: intentan detectar, cuantificar y proyectar hacia el futuro cualquier patrón repetitivo en los datos históricos.

  Hay dos tipos de patrones que se pueden encontrar en los datos históricos:

  • Tendencia
  • Estacionalidad

Estos patrones se ilustran en la siguiente figura junto con datos aleatorios.

Los métodos de previsión

 

Ilustración de datos de series de tiempo aleatorias, estacionales y de tendencia

Si el patrón es una tendencia, entonces los modelos extrapolativos, como el suavizado exponencial doble y el promedio móvil lineal, estiman la tasa de aumento o disminución en el nivel de la variable y proyectan esa tasa en el futuro.

Si el patrón es estacionalidad, entonces modelos como Winters y el suavizamiento exponencial triple estiman multiplicadores estacionales o factores de suma estacionales y luego los aplican a las proyecciones de la porción no estacional de los datos.

Muy a menudo, especialmente en el caso de los datos de ventas minoristas, intervienen patrones tanto de tendencia como estacionales. Si estos patrones son estables, se pueden aprovechar para dar pronósticos muy precisos.

A veces, sin embargo, no hay patrones obvios, de modo que los gráficos de los datos parecen ruido aleatorio. A veces los patrones son claramente visibles, pero cambian con el tiempo y no se puede confiar en que se repitan. En estos casos, los modelos extrapolativos no intentan cuantificar ni proyectar patrones. En cambio, intentan promediar el ruido y hacer buenas estimaciones del punto medio de la distribución de los valores de los datos. Estos valores típicos se convierten entonces en pronósticos. A veces, cuando los usuarios ven una trama histórica con muchos altibajos, se preocupan cuando el pronóstico no replica esos altibajos. Normalmente, esto no debería ser motivo de preocupación. Esto ocurre cuando los patrones históricos no son lo suficientemente fuertes como para justificar el uso de un método de pronóstico que replique el patrón. Quiere asegurarse de que sus pronósticos no sufran el "efecto de movimiento" que se describe en este entrada en el blog.

El pasado como predictor del futuro.

El supuesto clave implícito en los modelos extrapolativos es que el pasado es una buena guía para el futuro. Esta suposición, sin embargo, puede fracasar. Algunos de los datos históricos pueden estar obsoletos. Por ejemplo, los datos podrían describir un entorno empresarial que ya no existe. O bien, el mundo que representa el modelo puede estar listo para cambiar pronto, dejando todos los datos obsoletos. Debido a factores tan complicados, los riesgos del pronóstico extrapolativo son menores cuando se pronostica sólo a corto plazo en el futuro.

Los modelos extrapolativos tienen la ventaja práctica de ser baratos y fáciles de construir, mantener y utilizar. Sólo requieren registros precisos de los valores pasados de las variables que necesita pronosticar. A medida que pasa el tiempo, simplemente agrega los últimos puntos de datos a la serie temporal y vuelve a pronosticar. Por el contrario, los modelos causales que se describen a continuación requieren más pensamiento y más datos. La simplicidad de los modelos extrapolativos se aprecia más cuando se tiene un problema de pronóstico masivo, como hacer pronósticos de la demanda de un día para otro para los 30.000 artículos en el inventario de un almacén.

Ajustes de juicio

Los modelos extrapolativos se pueden ejecutar en modo completamente automático con Demand Planner sin necesidad de intervención. Los modelos causales requieren un juicio sustancial para una selección inteligente de variables independientes. Sin embargo, ambos tipos de modelos estadísticos pueden mejorarse mediante ajustes de juicio. Ambos pueden beneficiarse de sus conocimientos.

Tanto el modelo causal como el extrapolativo se basan en datos históricos. Sin embargo, es posible que tenga información adicional que no se refleja en los números que se encuentran en el registro histórico. Por ejemplo, es posible que sepa que las condiciones competitivas pronto cambiarán, tal vez debido a descuentos de precios, tendencias de la industria, la aparición de nuevos competidores o el anuncio de una nueva generación de sus propios productos. Si estos eventos ocurren durante el período para el cual usted está pronosticando, pueden arruinar la precisión de los pronósticos puramente estadísticos. La función de ajuste gráfico de Smart Demand Planner le permite incluir estos factores adicionales en sus pronósticos a través del proceso de ajuste gráfico en pantalla.

Tenga en cuenta que aplicar ajustes del usuario al pronóstico es un arma de doble filo. Si se utiliza adecuadamente, puede mejorar la precisión de los pronósticos al explotar un conjunto más rico de información. Si se utiliza de forma promiscua, puede añadir ruido adicional al proceso y reducir la precisión. Le recomendamos que utilice ajustes de juicio con moderación, pero que nunca acepte ciegamente las predicciones de un método de pronóstico puramente estadístico. También es muy importante medir el valor añadido previsto. Es decir, el valor agregado al proceso de pronóstico por cada paso incremental. Por ejemplo, si aplica anulaciones basadas en conocimientos comerciales, es importante medir si esos ajustes agregan valor al mejorar la precisión del pronóstico. Smart Demand Planner admite la medición del valor agregado del pronóstico mediante el seguimiento de cada pronóstico considerado y la automatización de los informes de precisión del pronóstico. Puede seleccionar pronósticos estadísticos, medir sus errores y compararlos con los anulados. Al hacerlo, informa el proceso de previsión para que se puedan tomar mejores decisiones en el futuro. 

Pronósticos de múltiples niveles

Otra situación común implica la previsión de múltiples niveles, donde se pronostican varios elementos como un grupo o incluso puede haber varios grupos, y cada grupo contiene varios elementos. Generalmente llamaremos a este tipo de pronóstico Pronóstico multinivel. El mejor ejemplo es el pronóstico de líneas de productos, donde cada artículo es miembro de una familia de artículos y el total de todos los artículos de la familia es una cantidad significativa.

Por ejemplo, como en la siguiente figura, es posible que tenga una línea de tractores y desee pronósticos de ventas para cada tipo de tractor y para toda la línea de tractores.

Los métodos de previsión 2

Ilustración de pronósticos de productos de múltiples niveles

 Smart Demand Planner proporciona pronósticos acumulativos y descendentes. Esta función es crucial para obtener pronósticos completos de todos los artículos de productos y el total de su grupo. El método Roll Down/Roll Up dentro de esta función ofrece dos opciones para obtener estos pronósticos:

Acumular (de abajo hacia arriba): esta opción inicialmente pronostica cada artículo individualmente y luego agrega los pronósticos a nivel de artículo para generar un pronóstico a nivel de familia.

Desplazar hacia abajo (de arriba hacia abajo): alternativamente, la opción de desplazamiento hacia abajo comienza formando el total histórico a nivel de familia, lo pronostica y luego asigna proporcionalmente el total al nivel de artículo.

Al utilizar Roll Down/Roll Up, tiene acceso a la gama completa de métodos de pronóstico proporcionados por Smart Demand Planner tanto a nivel de artículo como de familia. Esto garantiza flexibilidad y precisión en la previsión, atendiendo a las necesidades específicas de su negocio en diferentes niveles jerárquicos.

La investigación sobre pronósticos no ha establecido condiciones claras que favorezcan el enfoque de pronóstico de arriba hacia abajo o de abajo hacia arriba. Sin embargo, el enfoque ascendente parece preferible cuando los historiales de los artículos son estables y el énfasis está en las tendencias y patrones estacionales de los artículos individuales. La estrategia descendente suele ser una mejor opción si algunos elementos tienen un historial muy ruidoso o si el énfasis está en la previsión a nivel de grupo. Dado que Smart Demand Planner hace que sea rápido y fácil probar un enfoque tanto ascendente como descendente, debe probar ambos métodos y comparar los resultados. Puede utilizar la función "Retener lo actual" de Smart Demand Planner en "Pronóstico versus real" para probar ambos enfoques con sus propios datos y ver cuál produce un pronóstico más preciso para su negocio. 

 

Por qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicio

Las organizaciones MRO existen en una amplia gama de industrias, incluido el transporte público, los servicios eléctricos, las aguas residuales, la energía hidroeléctrica, la aviación y la minería. Para realizar su trabajo, los profesionales de MRO utilizan sistemas de gestión de activos empresariales (EAM) y planificación de recursos empresariales (ERP). Estos sistemas están diseñados para realizar muchos trabajos. Dadas sus características, costo y amplios requisitos de implementación, se supone que los sistemas EAM y ERP pueden hacerlo todo.

Por ejemplo, en un evento reciente del Grupo de Trabajo de Maximo Utilities, varios prospectos declararon que "Nuestro EAM hará eso" cuando se les preguntó sobre los requisitos para pronosticar el uso, compensar los planes de suministro y optimizar las políticas de inventario. Se sorprendieron al saber que no era así y quisieron saber más.

En esta publicación, resumimos la necesidad de un software complementario que aborde análisis especializados para la optimización del inventario, la previsión y la planificación de piezas de servicio.   

Sistemas EAM

Los sistemas EAM no pueden asimilar pronósticos de uso futuro; estos sistemas simplemente no están diseñados para llevar a cabo la planificación del suministro y muchos ni siquiera tienen un lugar para guardar pronósticos. Entonces, cuando una empresa de MRO necesita compensar los requisitos conocidos para proyectos de capital o producción planificados, una aplicación complementaria como IP&O inteligente es necesario.

El software de optimización de inventario con funciones que respaldan la planificación de la demanda futura conocida tomará datos basados en proyectos que no se mantienen en el sistema EAM (incluidas las fechas de inicio del proyecto, la duración y cuándo se espera que se necesite cada parte) y calculará un pronóstico período por período. en cualquier horizonte de planificación. Ese pronóstico "planificado" se puede proyectar junto con pronósticos estadísticos de la demanda "no planificada" que surge del desgaste normal. En ese punto, el software de planificación de piezas puede determinar la oferta e identificar las brechas entre la oferta y la demanda. Esto garantiza que estas lagunas no pasen desapercibidas y provoquen una escasez que, de otro modo, retrasaría la finalización de los proyectos. También minimiza el exceso de stock que, de otro modo, se pediría demasiado pronto y consume innecesariamente efectivo y espacio de almacén. Una vez más, las empresas de MRO a veces asumen erróneamente que estas capacidades se abordan en su paquete EAM.

Sistemas ERP

Los sistemas ERP, por otro lado, normalmente incluyen un módulo MRP que está diseñado para procesar un pronóstico y calcular los requisitos de materiales. El procesamiento considerará el inventario disponible actual, las órdenes de venta abiertas, los trabajos programados, las órdenes de compra entrantes, cualquier lista de materiales y artículos en tránsito durante la transferencia entre sitios. Comparará esos valores del estado actual con los campos de la política de reabastecimiento más cualquier pronóstico mensual o semanal para determinar cuándo sugerir el reabastecimiento (una fecha) y cuánto reabastecer (una cantidad).

Entonces, ¿por qué no utilizar únicamente el sistema ERP para compensar el plan de suministro y evitar la escasez y el exceso? En primer lugar, si bien los sistemas ERP tienen un espacio reservado para un pronóstico y algunos sistemas pueden calcular el suministro utilizando sus módulos MRP, no facilitan la conciliación de los requisitos de demanda planificados asociados con los proyectos de capital. La mayoría de las veces, los datos sobre cuándo se llevarán a cabo los proyectos planificados se mantienen fuera del ERP, especialmente la lista de materiales del proyecto que detalla qué piezas se necesitarán para respaldar el proyecto. En segundo lugar, muchos sistemas ERP no ofrecen nada efectivo cuando se trata de capacidades predictivas, sino que se basan en matemáticas simples que simplemente no funcionan para piezas de repuesto debido a la alta prevalencia de la demanda intermitente. Finalmente, los sistemas ERP no tienen interfaces flexibles y fáciles de usar que permitan interactuar con las previsiones y el plan de suministro.

Lógica de puntos de reordenamiento

Tanto ERP como EAM tienen marcadores de posición para métodos de reabastecimiento de puntos de reorden, como niveles mínimos y máximos. Puede utilizar software de optimización de inventario para completar estos campos con las políticas de puntos de reorden ajustadas al riesgo. Luego, dentro de los sistemas ERP o EAM, los pedidos se activan cada vez que la demanda real (no prevista) hace que el stock disponible esté por debajo del mínimo. Este tipo de política no utiliza un pronóstico tradicional que proyecta la demanda semana tras semana o mes tras mes y a menudo se lo conoce como “reabastecimiento impulsado por la demanda” (ya que los pedidos solo ocurren cuando la demanda real hace que el stock esté por debajo de un nivel definido por el usuario). límite).

Pero el hecho de que no utilice un pronóstico período tras período no significa que no sea predictivo. Las políticas de puntos de reorden deben basarse en una predicción de la demanda durante un tiempo de reabastecimiento más un margen para proteger contra la variabilidad de la demanda y la oferta. Las empresas de MRO necesitan conocer el riesgo de desabastecimiento en el que incurren con cualquier política de abastecimiento determinada. Después de todo, la gestión de inventario es gestión de riesgos, especialmente en las empresas de MRO, cuando el costo del desabastecimiento es tan alto. Sin embargo, ERP y EAM no ofrecen ninguna capacidad para ajustar las políticas de almacenamiento en función del riesgo. Obligan a los usuarios a generar manualmente estas políticas de forma externa o a utilizar reglas básicas que no detallan los riesgos asociados con la elección de la política.

Resumen

La funcionalidad de planificación de la cadena de suministro, como la optimización del inventario, no es el objetivo principal de EAM y ERP. Debería aprovechar las plataformas de planificación complementarias, como Smart IP&O, que admiten pronósticos estadísticos, gestión de proyectos planificados y optimización de inventario. Smart IP&O desarrollará pronósticos y políticas de almacenamiento que pueden ingresarse en un sistema EAM o ERP para impulsar los pedidos diarios.

 

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    El proceso de previsión para los responsables de la toma de decisiones

    En casi todos los negocios e industrias, quienes toman decisiones necesitan pronósticos confiables de variables críticas, como ventas, ingresos, demanda de productos, niveles de inventario, participación de mercado, gastos y tendencias de la industria.

    Hay muchos tipos de personas que hacen estos pronósticos. Algunos son analistas técnicos sofisticados, como economistas de negocios y estadísticos. Muchos otros consideran que los pronósticos son una parte importante de su trabajo general: gerentes generales, planificadores de producción, especialistas en control de inventarios, analistas financieros, planificadores estratégicos, investigadores de mercado y gerentes de productos y ventas. Aún así, otros rara vez se consideran pronosticadores, sino que a menudo tienen que hacer pronósticos sobre una base intuitiva y crítica.

    Debido a la forma en que diseñamos Smart Demand Planner, tiene algo que ofrecer a todo tipo de pronosticadores. Este diseño surge de varias observaciones sobre el proceso de pronóstico. Debido a que diseñamos Smart Demand Planner con estas observaciones en mente, creemos que tiene un estilo y contenido especialmente adecuados para convertir su navegador en una herramienta eficaz de previsión y planificación:

    La previsión es un arte que requiere una combinación de juicio profesional y análisis estadístico objetivo.

    A menudo resulta eficaz comenzar con un pronóstico estadístico objetivo que tenga en cuenta automáticamente las tendencias, la estacionalidad y otros patrones. Luego, aplique ajustes o anulaciones de pronósticos según su criterio comercial. Smart Demand Planner facilita la ejecución de ajustes gráficos y tabulares a los pronósticos estadísticos.

    El proceso de pronóstico suele ser iterativo.

    Es probable que decida hacer varios ajustes a su pronóstico inicial antes de estar satisfecho. Es posible que desee excluir datos históricos más antiguos que considere que ya no son relevantes. Se podrían aplicar diferentes ponderaciones al modelo de pronóstico que pongan distinto énfasis en los datos más recientes. Podría aplicar atenuación de tendencias para aumentar o disminuir los pronósticos estadísticos de tendencias agresivas. Puede permitir que los modelos de aprendizaje automático ajusten la selección de pronóstico por usted y seleccionen el modelo ganador automáticamente. La velocidad de procesamiento de Smart Demand Planner le brinda suficiente tiempo para realizar varias pasadas y guarda múltiples versiones de los pronósticos como “instantáneas” para que pueda comparar la precisión del pronóstico más adelante.

    La previsión requiere soporte gráfico.

    Los patrones evidentes en los datos pueden ser vistos por un ojo perspicaz. La credibilidad de sus pronósticos a menudo dependerá en gran medida de las comparaciones gráficas que hacen otras partes interesadas del negocio cuando evalúan los datos históricos y los pronósticos. Smart Demand Planner proporciona visualizaciones gráficas de pronósticos, historial e informes de pronóstico versus datos reales.

    Los pronósticos nunca son exactamente correctos.

    Debido a que siempre se introduce algún error incluso en el mejor proceso de pronóstico, uno de los complementos más útiles de un pronóstico es una estimación honesta de su margen de error.

    Smart Demand Planner presenta resúmenes gráficos y tabulares de la precisión del pronóstico basados en la prueba de fuego de los datos de predicción retenidos en el desarrollo del modelo de pronóstico. 

    También son muy útiles los intervalos de previsión o intervalos de confianza. Detallan el rango probable de demanda posible que se espera que ocurra. Por ejemplo, si la demanda real cae fuera del intervalo de confianza de 90% más de 10% del tiempo, entonces hay motivos para investigar más a fondo.  

    La previsión requiere una coincidencia del método con los datos.

    Una de las principales tareas técnicas en la elaboración de pronósticos es hacer coincidir la elección de la técnica de pronóstico con la naturaleza de los datos. Las características de una serie de datos como la tendencia, la estacionalidad o los cambios abruptos de nivel sugieren ciertas técnicas en lugar de otras.

    La función de previsión automática de Smart Demand Planner hace que esta coincidencia sea rápida, precisa y automática.

    La previsión suele ser parte de un proceso más amplio de planificación o control.

    Por ejemplo, los pronósticos pueden ser un complemento poderoso para el análisis financiero basado en hojas de cálculo, extendiendo filas de cifras hacia el futuro. Además, los pronósticos precisos de ventas y demanda de productos son aportes fundamentales para los procesos de planificación de producción y control de inventario de un fabricante. Un pronóstico estadístico objetivo de las ventas futuras siempre ayudará a identificar cuándo el presupuesto (o el plan de ventas) puede ser demasiado poco realista. El análisis de brechas permite a la empresa tomar medidas correctivas para su demanda y sus planes de marketing para garantizar que no incumplan el plan presupuestado.

    Los pronósticos deben integrarse en los sistemas ERP
    Smart Demand Planner puede transferir rápida y fácilmente sus resultados a otras aplicaciones, como hojas de cálculo, bases de datos y sistemas de planificación, incluidas aplicaciones ERP. Los usuarios pueden exportar pronósticos en una variedad de formatos de archivo, ya sea mediante descarga o mediante ubicaciones seguras de archivos FTP. Smart Demand Planner incluye integraciones basadas en API para una variedad de sistemas ERP y EAM, incluidos Epicor Kinetic y Epicor Prophet 21, Sage X3 y Sage 300, Oracle NetSuite y cada uno de los sistemas ERP Dynamics 365 de Microsoft. Las integraciones basadas en API permiten a los clientes enviar los resultados de las previsiones directamente al sistema ERP según demanda.

    El resultado es una planificación de ventas, elaboración de presupuestos, programación de producción, pedidos y planificación de inventario más eficientes.

     

     

     

     

    El pronóstico importa, pero tal vez no como usted piensa

    Verdadero o falso: El pronóstico no importa para la gestión del inventario de repuestos.

    A primera vista, esta afirmación parece evidentemente falsa. Después de todo, las previsiones son cruciales para planificar los niveles de existencias, ¿verdad?

    Depende de lo que entiendas por “previsión”. Si te refieres a un pronóstico de un solo número de la vieja escuela (“la demanda del artículo CX218b será de 3 unidades la próxima semana y de 6 unidades la semana siguiente”), entonces no. Si se amplía el significado de pronóstico para incluir una distribución de probabilidad que tenga en cuenta las incertidumbres tanto de la demanda como de la oferta, entonces sí.

    La realidad clave es que muchos artículos, especialmente repuestos y repuestos, tienen una demanda impredecible e intermitente. (Los plazos de entrega de los proveedores también pueden ser erráticos, especialmente cuando las piezas provienen de un OEM atrasado). Hemos observado que, si bien los fabricantes y distribuidores generalmente experimentan una demanda intermitente de solo 20% o más de sus artículos, el porcentaje aumenta a 80%+ para las empresas basadas en MRO. Esto significa que los datos históricos a menudo muestran períodos de demanda cero intercalados con períodos aleatorios de demanda distinta de cero. A veces, estas demandas distintas de cero son tan bajas como 1 o 2 unidades, mientras que en otras ocasiones aumentan inesperadamente a cantidades varias veces mayores que su promedio.

    Este no es el tipo de datos que normalmente enfrentan sus pares “planificadores de la demanda” en el comercio minorista, productos de consumo y alimentos y bebidas. Esas personas suelen trabajar con cantidades mayores que tienen proporcionalmente menos aleatoriedad. Y pueden navegar por características que mejoran las predicciones, como tendencias y patrones estacionales estables. En cambio, el uso de repuestos es mucho más aleatorio, lo que supone un obstáculo para el proceso de planificación, incluso en la minoría de casos en los que hay variaciones estacionales detectables.

    En el ámbito de la demanda intermitente, el mejor pronóstico disponible se desviará significativamente de la demanda real. A diferencia de los productos de consumo con volumen y frecuencia de medianos a altos, el pronóstico de una pieza de servicio puede fallar por cientos de puntos porcentuales. Un pronóstico de una o dos unidades, en promedio, siempre fallará cuando la demanda real sea cero. Incluso con inteligencia empresarial avanzada o algoritmos de aprendizaje automático, el error al pronosticar las demandas distintas de cero seguirá siendo sustancial.

    Quizás debido a la dificultad de hacer pronósticos estadísticos en el ámbito del inventario, la planificación del inventario en la práctica a menudo se basa en la intuición y el conocimiento del planificador. Desafortunadamente, este enfoque no abarca decenas de miles de piezas. La intuición simplemente no puede hacer frente a toda la gama de posibilidades de demanda y plazos de entrega, y mucho menos estimar con precisión la probabilidad de cada escenario posible. Incluso si su empresa tiene uno o dos pronosticadores intuitivos excepcionales, las jubilaciones de personal y las reorganizaciones de la línea de productos significan que no se puede confiar en los pronósticos intuitivos en el futuro.

    La solución radica en cambiar el enfoque de los pronósticos tradicionales a predecir probabilidades para cada escenario de demanda potencial y plazo de entrega. Este cambio transforma la conversación de un “plan de un solo número” poco realista a un rango de números con probabilidades asociadas. Al predecir las probabilidades de cada demanda y posibilidad de plazo de entrega, puede alinear mejor los niveles de existencias con la tolerancia al riesgo de cada grupo de piezas.

    El software que genera escenarios de demanda y plazos de entrega, repitiendo este proceso decenas de miles de veces, puede simular con precisión cómo se comportarán las políticas de almacenamiento actuales frente a estas políticas. Si el rendimiento en la simulación no es suficiente y se prevé que se agote con más frecuencia de la que se siente cómodo o que le quede un exceso de inventario, la realización de escenarios hipotéticos permite realizar ajustes en las políticas. Luego puede predecir cómo se comportarán estas políticas revisadas frente a demandas aleatorias y plazos de entrega. Puede llevar a cabo este proceso de forma iterativa y perfeccionarlo con cada nuevo escenario hipotético o apoyarse en políticas prescritas por el sistema que logren un equilibrio óptimo entre riesgo y costos.

    Por lo tanto, si está planificando inventarios de servicios y repuestos, deje de preocuparse por predecir la demanda como lo hacen los planificadores de demanda tradicionales del comercio minorista y de CPG. En cambio, concéntrese en cómo sus políticas de almacenamiento resistirán la aleatoriedad del futuro, ajustándolas en función de su tolerancia al riesgo. Para hacer esto, necesitará el conjunto adecuado de software de soporte a la toma de decisiones, y así es como Smart Software puede ayudar.

     

     

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.