Slimme software presenteert op NESCON 2020
Smart Software President en CEO presenteren NESCON New England Supply Chain Conference 2020 Breakout Session on Inventory Planning Processes
 
Belmont, Massachusetts, oktober 2020

Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat het zal presenteren op de NESCON 2020, New England Supply Chain Conference & Exhibition. De presentatie staat gepland op 5 oktober, 13:00-13:30 uur.

Greg Hartunian, CEO van Smart Software, zal onder de titel “Traditional inventory Planning Processes: Problems and Solutions” de sessie presenteren. Greg zal uitleggen hoe planningteams in staat worden gesteld om de voorraad te verminderen, de serviceniveaus te verbeteren en de operationele efficiëntie te verhogen.

Het optimaliseren van de voorraad kan eenvoudig worden gemaakt. De meeste voorraadplanningsteams vertrouwen op traditionele prognosebenaderingen, vuistregelmethoden en verkoopfeedback op aanvraag. Onze Breakout Session bij NESCON bespreekt deze benaderingen, waarom ze vaak mislukken en hoe nieuwe probabilistische prognose- en optimalisatiemethoden een groot verschil kunnen maken voor uw bedrijfsresultaten.

 

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

Wat u moet weten over voorraadprognoses en -planning

Q&A met Smart Software: Voorspellingsoplossingen en de zakelijke voordelen van voorraadoptimalisatie

Belmont, Massachusetts, oktober 2020 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, voorraadplanning en voorraadoptimalisatie, heeft vandaag aangekondigd dat SourceForge Online Magazine een interview zal bevatten met de CEO van Smart Software, Greg Hartunian. In het interview deelt dhr. Hartunian achtergrondinformatie over Smart Software's 35 jaar in de planningsoftwarebusiness, de zakelijke voordelen van het verbeteren van voorraadplanning en prognoseprocessen, en geeft hij praktisch advies om bedrijven te helpen de bestaande voorraad te verminderen en het serviceniveau te verhogen.
Ga naar om het artikel te lezen https://sourceforge.net/articles/

 

Summit Group Amerika slimme software

 

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, FedEx, MARS, The Home Depot, Siemens en Disney. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Otis

Slimme software presenteert op P21WWUG CONNECT 2020

Smart Software leidt P21WWUG CONNECT 2020 educatieve videosessies over voorraadbeleid.

Belmont, Massachusetts, augustus 2020 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, voorraadplanning en voorraadoptimalisatie, heeft vandaag aangekondigd dat Dr. Thomas Willemain, medeoprichter en SVP Research, de videosessie "Top Inventory Policies Explained" zal presenteren op P21WWUG CONNECT 2020 van 14 augustus tot en met 11 september 2020.

In deze video definieert en vergelijkt Dr. Thomas Willemain, mede-oprichter en SVP Research, veelgebruikt beleid voor voorraadbeheer. Na een korte inleiding over Smart Software, bespreekt Dr. Willemain vraaggestuurd beleid zoals Min/Max en Reorder Point. Dit wordt gevolgd door een beschrijving van Forecast Driven-beleid. Een beter begrip van dit beleid en hun voor- en nadelen stelt u in staat P21 zo te configureren dat het uw planningsvereisten beter ondersteunt. De sessie wordt afgesloten met een korte demo van Smart Inventory Optimization. De demo laat zien hoe u optimale planningsparameters kunt genereren waarmee u uw beoogde serviceniveaus tegen de laagste kosten kunt bereiken en hoe u het geoptimaliseerde beleid in slechts een paar muisklikken kunt terugsturen naar P21.

De videosessie is toegankelijk van 14 augustus tot en met 11 september. Smart Software zal ook aanwezig zijn op de virtuele conferentie over Smart Inventory Planning & Optimization.

 

Summit Group Amerika slimme software

 

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

 

 

 

 

 

 

 

Otis

 

5 Tips voor vraagplanning voor het berekenen van prognoseonzekerheid

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Degenen die prognoses maken, zijn het verschuldigd aan degenen die prognoses consumeren, en aan zichzelf, om zich bewust te zijn van de onzekerheid in hun prognoses. Deze notitie gaat over het schatten van prognoseonzekerheid en het gebruik van de schattingen in uw vraagplanningsproces. We richten ons op prognoses die zijn gemaakt ter ondersteuning van vraagplanning en op prognoses die inherent zijn aan voorraad optimaliseren beleid met betrekking tot bestelpunten, veiligheidsvoorraden en min/max-niveaus.

Als je dit leest, leer je over:

- Criteria voor het beoordelen van prognoses
-Bronnen van voorspellingsfout
- Berekening van de voorspellingsfout
-Voorspellingsfout omzetten in voorspellingsintervallen
-De relatie tussen vraagvoorspelling en voorraadoptimalisatie.
-Acties die u kunt ondernemen om deze concepten te gebruiken om de processen van uw bedrijf te verbeteren.

Criteria voor het beoordelen van prognoses

Voorspellingsfouten alleen zijn geen reden genoeg om prognoses als managementtool af te wijzen. Om een beroemd aforisme van George Box te verdraaien: "Alle voorspellingen zijn verkeerd, maar sommige zijn nuttig." Natuurlijk zullen zakelijke professionals altijd zoeken naar manieren om prognoses nuttiger te maken. Dit omvat meestal werk om prognosefouten te verminderen. Maar hoewel de nauwkeurigheid van prognoses het meest voor de hand liggende criterium is om prognoses te beoordelen, is het niet het enige. Hier is een lijst met criteria voor het evalueren van prognoses:

Nauwkeurigheid: Voorspellingen van toekomstige waarden zouden, achteraf bezien, heel dicht bij de werkelijke waarden moeten liggen die zich uiteindelijk zullen openbaren. Maar er kan een afnemend rendement zijn om nog een half procent nauwkeurigheid uit prognoses te persen die anders goed genoeg zijn om te gebruiken bij het nemen van beslissingen.

Tijdigheid: Gevechtspiloten verwijzen naar de OODA-lus (observeren, oriënteren, beslissen en handelen) en de "noodzaak om in de OODA-lus van de vijand te komen" zodat ze als eerste kunnen schieten. Ook bedrijven hebben beslissingscycli. Het leveren van een perfect nauwkeurige voorspelling de dag nadat het nodig was, is niet nuttig. Beter is een goede voorspelling die op tijd aankomt om bruikbaar te zijn.

Kosten: Het voorspellen van data, modellen, processen en mensen kosten allemaal geld. Een goedkopere prognose kan worden gevoed door gegevens die direct beschikbaar zijn; duurder zou een prognose zijn die draait op gegevens die moeten worden verzameld in een speciaal proces buiten de reikwijdte van de informatie-infrastructuur van een bedrijf. Een klassieke, kant-en-klare prognosetechniek zal minder duur zijn om aan te schaffen, te voeden en te exploiteren dan een complexe, op maat gemaakte, door een adviseur geleverde methode. Prognoses kunnen massaal worden geproduceerd door software onder supervisie van een enkele analist, of ze kunnen voortkomen uit een samenwerkingsproces dat tijd en inspanning vereist van grote groepen mensen, zoals districtsverkoopmanagers, productieteams en anderen. Technisch geavanceerde voorspellingstechnieken vereisen vaak het inhuren van personeel met gespecialiseerde technische expertise, zoals een masterdiploma in statistiek, dat doorgaans meer kost dan personeel met een minder geavanceerde opleiding.

Geloofwaardigheid: Uiteindelijk moet een leidinggevende elke prognose accepteren en ernaar handelen. Leidinggevenden hebben de neiging aanbevelingen te wantrouwen of te negeren die ze niet kunnen begrijpen of uitleggen aan de volgende persoon boven hen in de hiërarchie. Voor velen is geloven in een "zwarte doos" een te zware geloofsbeproeving, en zij verwerpen de voorspellingen van de zwarte doos ten gunste van iets transparanters.

Dat gezegd hebbende, zullen we ons nu concentreren op de voorspellingsnauwkeurigheid en de kwaadaardige tweeling, voorspellingsfout.

Bronnen van prognosefouten

Degenen die fouten willen verminderen, kunnen op drie plaatsen zoeken naar problemen:
1. De gegevens die in een prognosemodel gaan
2. Het model zelf
3. De context van de prognoseoefening

Er zijn verschillende manieren waarop gegevensproblemen kunnen leiden tot prognosefouten.

Grove fouten: Verkeerde data leveren verkeerde voorspellingen op. We hebben een geval gezien waarin computergegevens van de vraag naar producten een factor twee verkeerd waren! De betrokkenen zagen dat probleem meteen, maar een minder ernstige situatie kan er gemakkelijk doorheen glippen om het prognoseproces te vergiftigen. Sterker nog, het organiseren, verwerven en controleren van data is vaak de grootste bron van vertraging bij de implementatie van forecasting software. Veel gegevensproblemen lijken voort te komen uit het feit dat de gegevens onbelangrijk waren totdat een prognoseproject ze belangrijk maakte.

Afwijkingen: Zelfs met perfect samengestelde prognosedatabases, zijn er vaak gegevensproblemen van het type "naald in een hooiberg". In deze gevallen zijn het niet de gegevensfouten, maar vraagafwijkingen die bijdragen aan de voorspellingsfout. In een set van bijvoorbeeld 50.000 producten is het waarschijnlijk dat een bepaald aantal artikelen vreemde details heeft die prognoses kunnen vertekenen.

Holdout-analyse is een eenvoudige maar krachtige analysemethode. Om te zien hoe goed een methode voorspelt, gebruikt u deze met oudere bekende gegevens om nieuwere gegevens te voorspellen en ziet u vervolgens hoe het zou zijn uitgekomen! Stel dat u 36 maanden aan vraaggegevens heeft en 3 maanden vooruit moet voorspellen. U kunt het prognoseproces simuleren door de meest recente 3 maanden aan gegevens achter te houden (dwz te verbergen), prognoses te maken met alleen gegevens van maand 1 tot 33 en vervolgens de prognoses voor maanden 34-36 te vergelijken met de werkelijke waarden in maanden 34-36 . Glijdende simulatie herhaalt alleen de holdout-analyse en glijdt langs de vraaggeschiedenis. In het bovenstaande voorbeeld werden de gegevens van de eerste 33 maanden gebruikt om 3 schattingen van de voorspellingsfout te krijgen. Stel dat we het proces starten door de eerste 12 maanden te gebruiken om de volgende 3 te voorspellen. Dan schuiven we vooruit en gebruiken de eerste 13 maanden om de volgende 3 te voorspellen. We gaan door totdat we uiteindelijk de eerste 35 maanden gebruiken om de laatste maand te voorspellen, wat geeft ons nog een schatting van de fout die we maken bij het voorspellen van een maand vooruit. Een samenvatting van alle 1-stap vooruit, 2-stap vooruit en 3 stap vooruit voorspellingsfouten biedt een manier om voorspellingsintervallen te berekenen.

Voorspellingsintervallen berekenen

De laatste stap bij het berekenen van voorspellingsintervallen is het omzetten van de schattingen van de gemiddelde absolute fout in de boven- en ondergrenzen van het voorspellingsinterval. Het voorspellingsinterval op een willekeurig tijdstip in de toekomst wordt berekend als

Voorspellingsinterval = Voorspelling ± Vermenigvuldiger x Gemiddelde absolute fout.

De laatste stap is de keuze van de vermenigvuldiger. De typische benadering is om een kansverdeling van fouten rond de voorspelling voor te stellen en vervolgens de uiteinden van het voorspellingsinterval te schatten met behulp van de juiste percentielen van die verdeling. Gewoonlijk is de veronderstelde foutverdeling de normale verdeling, ook wel de Gaussische verdeling of de "klokvormige curve" genoemd.

Gebruik van voorspellingsintervallen
Het meest directe, informele gebruik van voorspellingsintervallen is om een idee te geven van hoe "squishy" een voorspelling is. Voorspellingsintervallen die breed zijn in vergelijking met de omvang van de prognoses wijzen op een grote onzekerheid.

Er zijn twee meer formele toepassingen bij vraagprognoses: het afdekken van uw weddenschappen over de toekomstige vraag en het begeleiden van prognoseaanpassingen.

Uw weddenschappen afdekken: De prognosewaarden zelf benaderen de meest waarschijnlijke waarden van de toekomstige vraag. Een meer onheilspellende manier om hetzelfde te zeggen is dat er een kans van ongeveer 50% is dat de werkelijke waarde boven (of onder) de voorspelling zal liggen. Als de prognose wordt gebruikt om toekomstige productie te plannen (of de aankoop of aanwerving van grondstoffen), wilt u misschien een buffer inbouwen om te voorkomen dat u tekort komt als de vraag piekt (ervan uitgaande dat onderbouw erger is dan overbouw). Als de prognose wordt geconverteerd van eenheden naar dollars voor omzetprognoses, wilt u misschien een waarde onder de prognose gebruiken om conservatief te zijn bij het projecteren van de cashflow. In beide gevallen moet u eerst de dekking van het voorspellingsinterval kiezen. Een 90%-voorspellingsinterval is een bereik van waarden dat 90% van de mogelijkheden dekt. Dit impliceert dat er een kans van 5% is dat een waarde boven de bovengrens van het 90%-voorspellingsinterval valt. Met andere woorden, de bovengrens van een 90%-voorspellingsinterval markeert het 95e percentiel van de verdeling van de voorspelde vraag in die periode. Evenzo is er een kans van 5% om onder de ondergrens te vallen, wat het 5e percentiel van de vraagverdeling markeert.

Begeleidende voorspellingsaanpassing: Het komt vrij vaak voor dat statistische prognoses worden herzien door een of ander samenwerkingsproces. Deze aanpassingen zijn gebaseerd op informatie die niet is vastgelegd in de vraaggeschiedenis van een item, zoals informatie over acties van concurrenten. Soms zijn ze gebaseerd op een meer vluchtige bron, zoals het optimisme van het verkoopteam. Wanneer de aanpassingen op het scherm worden aangebracht zodat iedereen ze kan zien, bieden de voorspellingsintervallen een nuttige referentie: als iemand de voorspellingen buiten de voorspellingsintervallen wil verplaatsen, overschrijden ze een op feiten gebaseerde grens en moeten ze een goed verhaal hebben om hun argument dat de dingen in de toekomst echt anders zullen zijn.

Voorspellingsintervallen en voorraadoptimalisatie

Ten slotte speelt het concept achter voorspellingsintervallen een essentiële rol in een probleem met betrekking tot vraagvoorspelling: Voorraad optimalisatie.
De belangrijkste analytische taak bij het instellen van bestelpunten (ook wel Mins genoemd) is het voorspellen van de totale vraag over een doorlooptijd voor aanvulling. Dit totaal wordt de doorlooptijdvraag genoemd. Wanneer de voorhanden voorraad daalt tot of onder het bestelpunt, wordt een aanvullingsorder geactiveerd. Als het bestelpunt hoog genoeg is, is er een acceptabel klein risico op voorraaduitval, dat wil zeggen dat de doorlooptijdvraag de voorraad onder nul brengt en leidt tot verloren verkopen of nabestellingen.

SDP_Screenshot nieuwe statistische methoden planning

Nieuwe statistische methoden, en we kunnen effectiever gaan plannen.

De prognosetaak is het bepalen van alle mogelijke waarden van de cumulatieve vraag over de doorlooptijd en hun bijbehorende kansen van optreden. Met andere woorden, de basistaak is het bepalen van een voorspellingsinterval voor een toekomstige willekeurige variabele. Stel dat u een 90%-voorspellingsinterval hebt berekend voor de doorlooptijdvraag. Dan vertegenwoordigt de bovenkant van het interval het 95e percentiel van de verdeling. Door het bestelpunt op dit niveau in te stellen, is er plaats voor 95% van de mogelijke vraagwaarden voor de doorlooptijd, wat betekent dat er slechts een kans van 5% is dat de voorraad is uitgeput voordat de voorraad wordt aangevuld om de schappen opnieuw te bevoorraden. Er is dus een nauw verband tussen voorspellingsintervallen bij vraagprognoses en de berekening van bestelpunten bij voorraadoptimalisatie.

 

5 aanbevelingen voor de praktijk

1. Stel verwachtingen over fouten: Soms hebben managers onredelijke verwachtingen over het terugbrengen van prognosefouten tot nul. U kunt erop wijzen dat fouten slechts één van de dimensies is waarop een prognoseproces moet worden beoordeeld; het kan goed gaan met zowel tijdigheid als kosten. Wijs er ook op dat nul fouten evenmin een realistischer doel is dan 100% conversie van prospects naar klanten, perfecte leveranciersprestaties of nul volatiliteit van aandelenkoersen.

2. Spoor bronnen van fouten op: controleer de nauwkeurigheid van vraaggeschiedenissen. Gebruik statistische methoden om uitschieters in vraaggeschiedenissen te identificeren en gepast te reageren, geverifieerde anomalieën te vervangen door meer typische waarden en gegevens weg te laten van vóór grote veranderingen in de aard van de vraag. Als u een gezamenlijk prognoseproces gebruikt, vergelijkt u de nauwkeurigheid ervan met een puur statistische benadering om items te identificeren waarvoor samenwerking de fouten niet vermindert.

3. Evalueer de fout van alternatieve statistische methoden: er kunnen kant-en-klare technieken zijn die het beter doen dan uw huidige methoden, of het beter doen voor sommige subsets van uw items. De sleutel is om empirisch te zijn, gebruikmakend van het idee van holdout-analyse. Verzamel uw gegevens en doe een "bake off" tussen verschillende methoden om te zien welke voor u beter werken. Als u nog geen statistische prognosemethoden gebruikt, vergelijk ze dan met de "gouden buik" van uw huidige standaard. Gebruik de naïeve voorspelling als maatstaf in de vergelijkingen.

4. Onderzoek het gebruik van nieuwe gegevensbronnen: Vooral als u items heeft die veel gepromoot worden, test u statistische methoden die promotionele gegevens opnemen in het prognoseproces. Ga ook na of er misbruik kan worden gemaakt van informatie van buiten uw bedrijf; kijk bijvoorbeeld of macro-economische indicatoren voor uw sector kunnen worden gecombineerd met bedrijfsgegevens om de nauwkeurigheid van prognoses te verbeteren (dit wordt meestal gedaan met behulp van een methode die meervoudige regressieanalyse wordt genoemd).

5. Gebruik voorspellingsintervallen: Plots van voorspellingsintervallen kunnen uw gevoel voor de onzekerheid in uw prognoses verbeteren, waardoor u items kunt selecteren voor extra onderzoek. Hoewel het waar is dat wat je niet weet je pijn kan doen, is het ook waar dat weten wat je niet weet je kan helpen.

Laat een reactie achter

gerelateerde berichten

Belangrijke overwegingen bij het evalueren van de prognosemogelijkheden van uw ERP-systeem

Belangrijke overwegingen bij het evalueren van de prognosemogelijkheden van uw ERP-systeem

Overweeg wat wordt bedoeld met "vraagbeheer", "vraagplanning" en "prognoses". Deze termen impliceren bepaalde standaardfunctionaliteit voor samenwerking, statistische analyse en rapportage ter ondersteuning van een professioneel vraagplanningsproces. In de meeste ERP-systemen echter, "vraagbeheer" waarbij MRP wordt uitgevoerd en vraag en aanbod worden afgestemd met het oog op het plaatsen van bestellingen

De 3 soorten supply chain-analyse

De 3 soorten supply chain-analyse

De drie soorten supply chain-analyses zijn 'beschrijvend', 'voorspellend' en 'voorschrijvend'. Elk speelt een andere rol bij het beheren van uw voorraad. Met moderne supply chain-software kunt u alle drie gebruiken, waardoor u de voorraadkosten kunt verlagen, de tijdige levering en serviceniveaus kunt verbeteren en tegelijkertijd een efficiëntere supply chain kunt runnen.

De juiste prognosenauwkeurigheidsmetriek voor voorraadplanning

De juiste prognosenauwkeurigheidsmetriek voor voorraadplanning

Het testen van softwareoplossingen via een reeks van empirische concurrentie kan een aantrekkelijke optie zijn. In het geval van prognoses en vraagplanning is een traditionele "hold-out"-test een goede manier om de nauwkeurigheid van de maandelijkse of wekelijkse prognose te beoordelen, maar het is minimaal nuttig als u een ander doel heeft: het optimaliseren van de voorraad.

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Cloud computing-bedrijven met unieke server- en hardwareonderdelen, e-commerce, online retailers, leveranciers van thuis- en kantoorbenodigdheden, meubilair op locatie, energiebedrijven, intensief onderhoud van bedrijfsmiddelen of opslag voor watervoorzieningsbedrijven hebben hun activiteit tijdens de pandemie opgevoerd. Garages die auto-onderdelen en vrachtwagenonderdelen verkopen, farmaceutische producten, producenten van gezondheidszorg of medische benodigdheden en leveranciers van veiligheidsproducten hebben te maken met een toenemende vraag. Bezorgservicebedrijven, schoonmaakdiensten, slijterijen en magazijnen voor conserven of potten, woonwinkels, tuinleveranciers, tuinonderhoudsbedrijven, hardware-, keuken- en bakbenodigdhedenwinkels, leveranciers van woonmeubelen met een grote vraag worden geconfronteerd met voorraadtekorten, lange doorlooptijden, voorraad tekortkosten, hogere bedrijfskosten en bestelkosten.

      Beheer van de inventaris van gepromote artikelen

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      In een vorige postbesprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

      Als u de termen herziet, bedenk dan dat "serviceniveau" de waarschijnlijkheid is van het niet bevoorraden terwijl u wacht op een aanvullingsorder, terwijl "vulpercentage" het percentage van de vraag is waaraan onmiddellijk uit voorraad wordt voldaan. In mijn vorige bericht, "The Scourge of Skewness", heb ik erop gewezen dat een bepaald type vraagverdeling, met een "long right tail", zal leiden tot opvullingspercentages die veel lager kunnen zijn dan de serviceniveaus. Ik heb er ook op gewezen dat soms de enige manier om het opvullingspercentage te verbeteren, is om het beoogde serviceniveau te verhogen tot een ongewoon hoog niveau, wat duur kan zijn.

      In dit bericht zal ik kijken naar het oplossen van het probleem in één speciaal geval: scheefheid als gevolg van effectieve verkooppromoties vermengd met "intermitterende vraag". Intermitterende vraag heeft een groot deel van nulwaarden, met willekeurige waarden die niet gelijk zijn aan nul. Succesvolle verkooppromoties, uiteraard positief, hebben een keerzijde: ze kunnen het "vraagsignaal" verwarren met pieken in uw vraaggeschiedenis, en kunnen prognoses en vertekening van veiligheidsvoorraadberekeningen ondermijnen. Wanneer een intermitterende vraag en effectieve verkoopacties de oorzaak zijn van de scheefheid van uw gegevens, bestaan er methoden om het probleem te omzeilen om zowel hogere opvullingspercentages als nauwkeurigere vraagprognoses te bereiken.

      Hoe promoties scheefheid vergroten

      Succesvolle promoties doen de vraag naar artikelen abrupt stijgen. Dit creëert anomalieën, of "uitschieters", die bijdragen aan het vormen van een scheve verdeling. Als we weten wanneer er in het verleden promoties hebben plaatsgevonden, kunnen we het record van de eerdere vraag van een item aanpassen. We produceren een alternatieve vraaggeschiedenis alsof er geen promoties zijn geweest, door de uitschieters te vervangen door waarden die meer representatief zijn voor het "natuurlijke" vraagniveau. Deze aanpassingen verminderen de scheefheid van de vraag. Verminderde scheefheid kan leiden tot aanzienlijke verlagingen van zowel verwachte prognoses als veiligheidsvoorraden, die bij elkaar optellen om bestelpunten te vormen.

      Succesvolle promoties zullen waarschijnlijk worden herhaald. Wanneer dat gebeurt, kunnen de promotie-effecten worden toegevoegd aan vraagprognoses om hun nauwkeurigheid te vergroten. Het effect van toekomstige promoties op voorraadbeheer zal zijn dat het risico van stockouts toeneemt, dus een verstandige reactie is om op operationeel niveau te werken aan het opbouwen van tijdelijke voorraad, in een hoeveelheid die is afgestemd op de geschatte impact van eerdere promoties op de betrokken artikelen.

       

      Gebeurtenismodellering gebruiken om vraagprognoses te verbeteren

      Het is mogelijk om de impact van soortgelijke evenementen te modelleren en dit toe te passen op geplande evenementen in de toekomst. Als u dit doet, kunt u uw prognose op twee manieren verbeteren: door de vraagschok te projecteren die u verwacht van een gepland evenement; en het rationaliseren van de pieken in het verleden die werden veroorzaakt door gebeurtenissen, waardoor uw basisactiviteit zichtbaarder en nauwkeuriger voorspelbaar wordt. We doen dit veel in SmartForecasts, dus sta me toe onze ervaring daar te gebruiken om u te laten zien wat ik bedoel.

      Event Modeling omvat de volgende stappen:
      • Automatische inschatting van de impact van eerdere promoties (wat op zich al een nuttig resultaat is).
      • Historische vraag aanpassen om het effect van promoties statistisch te verwijderen.
      • Promotie-vrije prognoses maken.
      • Het herzien van de prognoses voor eventuele toekomstige perioden waarin promoties zijn gepland.

      We noemen dit type analyse “Promo forecasting”. We gebruiken het woord "promoties" om te beschrijven wat u zelf doet om uw resultaten te verbeteren. We gebruiken 'gebeurtenissen' om te beschrijven wat de wereld met u doet, meestal in uw nadeel; voorbeelden zijn stakingen, stroomuitval, magazijnbranden en andere ongelukkige gebeurtenissen.

      Om te begrijpen hoe Event Modeling u kan helpen om te gaan met scheefheid bij het doen van vraagprognoses voor artikelen met een hoog volume, bekijkt u figuren 1-3.

      Figuur 1 laat zien dat het vraagpatroon van dit artikel duidelijk seizoensgebonden is en dat de voorspelling zowel seizoensgebonden als "strak" is, wat betekent dat het voorspelde onzekerheidsinterval ("foutmarge", weergegeven in cyaankleurige lijnen) erg smal is.

      Afbeelding 2 toont een alternatieve geschiedenis waarin een promotie in juni 2014 het gebruikelijke seizoensdieptepunt van juni-verkopen omkeerde. Dit vraagpatroon werd voorspeld met behulp van het automatische voorspellingstoernooi in SmartForecasts, zoals in afbeelding 1. Deze keer vervormde de promotie het seizoenspatroon voldoende om een ongepaste niet-seizoensgebonden voorspelling te maken, en een die een veel grotere foutmarge heeft.

      Ten slotte laat afbeelding 3 zien hoe Promo-prognoses omgaan met hetzelfde gepromote scenario, een seizoensprognose behouden en in de prognose een schatting inbouwen van het effect van een geplande herhalingspromotie in 2015.

      Het geval van intermitterende vraag

      In afbeelding 1 was het artikel een gereed product met een hoog volume en was de taak vraagprognose. Promomodellering is ook nuttig wanneer het gaat om het instellen van veiligheidsvoorraden en bestelpunten voor artikelen met intermitterende vraag, of het nu gaat om gereed product, componenten of reserveonderdelen. Intermitterende vraag heeft vaak een scheve verdeling die het moeilijk maakt om een hoge artikelbeschikbaarheid te bereiken met een kleine investering in voorraad.

      Afbeelding 4 illustreert het probleem dat een succesvolle promotie per ongeluk kan veroorzaken voor voorraadbeheer. Als zo'n piek het gevolg is van de natuurlijke, niet-gestimuleerde vraag, dan is de enige manier om hoge opvullingspercentages te behouden, om veiligheidsvoorraden aan te leggen die groot genoeg zijn om deze willekeurige pieken op te vangen. In dit geval was de grote vraagpiek van 500 stuks in februari 2013 het resultaat van een eenmalige actie.

      Rekening houden met promoties om voorraadbeheer te verbeteren

      Als u de piek in het bovenstaande voorbeeld onbewust beschouwt als onderdeel van de natuurlijke variabiliteit in de vraag, resulteert dit in een slecht opvullingspercentage. Om een beoogd serviceniveau van bijvoorbeeld 95% met een doorlooptijd van één maand te bereiken, zou een bestelpunt van 38 eenheden nodig zijn, berekend als de som van een verwachte prognose over de aanvultijd van één maand van 21 eenheden aangevuld met een veiligheidsvoorraad van 17 eenheden. Deze investering zou resulteren in een teleurstellend opvullingspercentage van slechts 36%.

      Erkennen dat de piek een eenmalige promotie is en de 500 eenheden vervangen door 0 zou natuurlijk een groot verschil maken. Het bestelpunt zou dalen van 38 eenheden naar 31 (de som van een verwachte vraag van 7 eenheden en een veiligheidsvoorraad van 24 eenheden) en het opvullingspercentage zou toenemen tot 94%.

      Het is natuurlijk niet oké om vervelende pieken in de vraag gewoon weg te gooien wanneer ze het leven ongemakkelijk maken; er moet een valide 'business story' achter de aanpassing van de historische vraag zitten. Als de piek het gevolg is van een gegevensverwerkingsfout, repareer deze dan in ieder geval. Als de piek samenvalt met een promotie, zal het vervangen van de piek door bijvoorbeeld de mediane vraag (vaak nul, zoals in dit voorbeeld) resulteren in een veel duurzamere voorraadinvestering die nog steeds voldoet aan agressieve prestatiedoelstellingen. Toekomstige promoties van hetzelfde type op hetzelfde artikel zullen wat extra inspanning vergen om zich voor te bereiden op de tijdelijke stijging van de vraag, maar het aanbevolen bestelpunt zal op de lange termijn correct zijn.

      Thomas Willemain, PhD, was medeoprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselear Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

      Laat een reactie achter

      gerelateerde berichten

      Gedachten over de planning van reserveonderdelen voor het openbaar vervoer

      Gedachten over de planning van reserveonderdelen voor het openbaar vervoer

      De pandemie van Covid19 heeft ongebruikelijke druk gelegd op openbaar vervoersbedrijven. Deze stress dwingt bureaus om opnieuw naar hun processen en apparatuur te kijken. Deze blog richt zich op bussystemen en hun praktijken voor planning en beheer van reserveonderdelen. Er zijn hier echter lessen voor andere soorten openbaar vervoer, waaronder spoor en lightrail

      Een inleiding op probabilistische prognoses

      Een inleiding op probabilistische prognoses

      Als u het nieuws over supply chain-analyses bijhoudt, komt u vaker de uitdrukking 'probabilistische prognoses' tegen. Probabilistische voorspellingen hebben de mogelijkheid om toekomstige waarden te simuleren die niet verankerd zijn in het verleden. Als deze zin raadselachtig is, lees dan verder.

      Goudlokje Voorraadniveaus

      Goudlokje Voorraadniveaus

      Misschien herinner je je het verhaal van Goudlokje uit je jeugd lang geleden. Soms was de pap te heet, soms te koud, maar een keer was het precies goed. Nu we volwassen zijn, kunnen we dat sprookje vertalen in een professioneel principe voor voorraadplanning: er kan te weinig of te veel voorraad zijn en er is een bepaald Goudlokje-niveau dat "precies goed" is. Deze blog gaat over het vinden van die sweet spot.

      recente berichten

      • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]