De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Het testen van softwareoplossingen via een reeks empirische competities kan een aanzienlijke optie zijn. Voor prognoses/vraagplanning is dit een traditionele “hold out”-test waarbij gegevens voor 2014-2018 worden verstrekt aan softwareleveranciers en 2019 wordt aangehouden voor latere vergelijking met prognoses van concurrerende leveranciers. Het bedrijf meet vervolgens prognosefouten en vooringenomenheid. Deze benadering wordt bijna universeel aanbevolen voor het beoordelen van de nauwkeurigheid van prognoses. Het is een goede manier om de nauwkeurigheid van maandelijkse of wekelijkse prognoses te beoordelen, maar het is minimaal nuttig als u een ander doel heeft: voorraad optimaliseren.

In onze vorige blog hebben we het erover gehad hoe u een gericht serviceniveau kiest. We hebben aangegeven dat het feit dat je een doel stelt (of een systeem een doel aanbeveelt) niet betekent dat je het doel ook daadwerkelijk zult bereiken. De juiste manier om nauwkeurigheid te meten als u geïnteresseerd bent in het optimaliseren van voorraadniveaus, is door u te concentreren op de nauwkeurigheid van de projectie van het serviceniveau. Dit houdt rekening met zowel de doorlooptijdvraag als de veiligheidsvoorraad.

Een instellen beoogde serviceniveau is een strategische beslissing over voorraadrisicobeheer. Voorraadsoftware doet het tactische werk door herordeningspunten (ook wel minuten genoemd) te berekenen die bedoeld zijn om een door de gebruiker gedefinieerd doel te bereiken of om een door het systeem berekend optimaal doel te bereiken. Maar als de software het verkeerde vraagmodel gebruikt, kan de bereikte servicegraad zal het doel missen, soms aanzienlijk. Het resultaat van deze fout is ofwel een tekort ofwel een opgeblazen voorraad, afhankelijk van de richting van de misser.

Grafische benadering wordt bijna universeel aanbevolen voor het beoordelen van de nauwkeurigheid van prognosesPrognoses zijn een middel om een doel te bereiken. Het doel is om voorraadniveaus te optimaliseren. Omdat de vraag onzeker is, moeten bedrijven die zelfs maar een matig serviceniveau moeten bieden, meer voorraad hebben dan de prognose, vaak veel meer. Maar betekent een lage voorspellingsfout niet een lagere veiligheidsvoorraad? Hoe beter mijn prognoses, hoe lager mijn voorraad? Ja waar. Maar waar het bij het bepalen van de benodigde voorraad om gaat, zijn zowel nauwkeurige prognoses van de meest waarschijnlijke vraag als nauwkeurige schattingen van de variabiliteit rond de meest waarschijnlijke vraag.

Vooral met een langdurige, intermitterende vraag, missen traditionele prognosenauwkeurigheidsbeoordelingen over een conventionele prognosehorizon van 12 maanden het punt op drie manieren.

– Ten eerste is de relevante tijdschaal voor voorraadoptimalisatie de doorlooptijd voor aanvulling, die meestal veel korter is dan 12 maanden. Vraag tijdens doorlooptijden gemeten in dagen of weken heeft een volatiliteit die wordt gemiddeld over lange prognosehorizons. Dit is slecht omdat rekening houden met het effect van volatiliteit essentieel is voor de berekening van optimale bestelpunten.

– Ten tweede richt de prognosenauwkeurigheid die wordt beoordeeld over een prognosehorizon van meerdere maanden zich op de typische fout in een typische maand binnen de horizon. Voorraadoptimalisatie vereist daarentegen een focus op de cumulatieve vraag, niet op de vraag per periode.

– Ten derde, en het belangrijkste, is dat prognosefoutstatistieken gericht zijn op het midden van de vraagverdeling, met als doel de meest waarschijnlijke vraag in te schatten. Maar het instellen van bestelpunten omvat het schatten van hoge percentielen van de cumulatieve vraagverdeling over een doorlooptijd. Het midden iets beter inschatten, maar geen idee hebben van bijvoorbeeld het 95e percentiel, helpt niet.

Beschouw dit hypothetische voorbeeld. Als leverancier A 20 eenheden voorspelt met een 110%-fout en leverancier B voorspelt 22 eenheden met een 105%-fout, dan heeft leverancier B een voordeel in het voorspellingsspel. Maar als u een hoog serviceniveau wilt en de vraag wisselvallig is, moet u veel meer dan 20 of 22 eenheden op voorraad hebben. Laten we aannemen dat u de technologie van leverancier B selecteert om voorraadniveaus te plannen. Je merkt dan dat bij het plannen van bestelpunten om een 95%-serviceniveau te bereiken, je vaak tekortschiet - veel vaker dan de verwachte 5% van die tijd. U komt tot het besef dat de benadering van leverancier B de veiligheidsvoorraad die nodig is om het beoogde servicedoel te bereiken, volledig onderschat. Focussen op de voorspellingsfout van leveranciers zal niet helpen. U zult gaan wensen dat u de leveranciers A en B had geverifieerd nauwkeurigheid op serviceniveau. Nu zit u vast aan het willekeurig aanpassen van de serviceniveaudoelstellingen van leverancier B om het tekort te compenseren.

Wat dus nodig is bij leverancierscompetities, is een beoordeling van het vermogen van hun systemen om nauwkeurig de voorraad te voorspellen die nodig is om te voldoen aan een bepaald serviceniveau gedurende de doorlooptijd van een artikel. Een beperkte focus op het meten van prognosefouten is niet gepast als de missie inventarisbeheer is. Dit geldt met name voor longtail-artikelen met intermitterende vraag of artikelen met een gemiddeld tot hoog volume maar zonder een vraagverdeling die lijkt op de klassieke "klokvormige curve" (normale verdeling).

In de rest van deze blog wordt uitgelegd hoe u de nauwkeurigheid van de serviceniveauberekeningen van software kunt testen, zodat u het risico kunt bewaken dat u uw serviceniveaudoelen niet haalt. We raden deze nauwkeurigheidstest aan in plaats van traditionele "prognose versus werkelijke" tests, omdat deze veel meer inzicht geeft in hoe aanbevelingen voor bestelpunten voorraadniveaus en klantenservice zullen beïnvloeden.

Kantoorpersoneel analyseert The Right Forecast Accuracy Metric voor voorraadplanning

Kantoorpersoneel analyseert The Right Forecast Accuracy Metric voor voorraadplanning

Serviceniveau gedefinieerd

Overweeg een enkel inventarisitem. Wanneer de voorraad daalt tot of onder het bestelpunt, wordt een aanvullingsorder gegenereerd. Hiermee begint een risicoperiode die net zo lang duurt als de doorlooptijd van de aanvulling. Tijdens de risicoperiode kunnen er voldoende aanvragen binnenkomen om naleveringen of verloren verkopen te creëren. Het serviceniveau is de waarschijnlijkheid dat er geen backorders of stockouts zijn tijdens de doorlooptijd van de aanvulling. Kritieke items kunnen zeer hoge doelserviceniveaus krijgen, bijvoorbeeld 99%, terwijl andere items mogelijk meer ontspannen doelen hebben, zoals 75%. Wat het beoogde serviceniveau ook is, het is het beste om dat doel te halen.

Serviceniveau berekenen

Het serviceniveau voor een individueel artikel kan alleen worden geschat door de waargenomen doorlooptijdvraag herhaaldelijk te vergelijken met het berekende bestelpunt. Deze schattingen kosten veel tijd: zeker tientallen doorlooptijden. Maar het serviceniveau van het wagenpark kan worden geschat met behulp van gegevens die over een enkele doorlooptijd zijn verzameld.

Laten we een voorbeeld doen. Stel dat u een vraaggeschiedenis heeft voor 1.000 artikelen gedurende 365 dagen en dat (voor de eenvoud) alle artikelen een doorlooptijd van 45 dagen hebben. Volg voor elk artikel de volgende stappen om het voor het wagenpark bereikte serviceniveau te schatten:

Stap 1: Zet de meest recente 45 dagen aan vraag opzij ('houd uit') (of het aantal dagen dat het dichtst bij uw typische doorlooptijden ligt). Bereken hun som, wat de meest recente waarde is van de werkelijke doorlooptijdvraag. Dit is de grondwaarheid die wordt gebruikt om het bereikte serviceniveau in te schatten.

Stap 2: Gebruik de voorafgaande 320 dagen aan vraaggeschiedenis om te voorspellen hoeveel voorraad nodig is om een reeks serviceniveaudoelen te bereiken, bijvoorbeeld 90%, 95%, 97% en 99%.

Stap 3: Controleer of de waargenomen doorlooptijdvraag kleiner is dan of gelijk is aan het bestelpunt. Als dat zo is, tel dit dan als een overwinning; reken het anders als een verlies. Als het bestelpunt bijvoorbeeld 15 eenheden is, maar de meest recente doorlooptijdvraag 10 eenheden is, dan is dit een overwinning, aangezien het bestelpunt hoog genoeg is om een doorlooptijdvraag van 10 te dekken zonder enig tekort. Als de meest recente doorlooptijdvraag echter 18 eenheden is, zou er sprake zijn van een voorraaduitval en zouden 3 eenheden worden nabesteld of als verloren verkoop worden geteld.

Stap 4: Tel voor alle items en alle serviceniveaudoelen het percentage tests voor elk serviceniveaudoel dat tot een overwinning heeft geleid. Dit is het behaalde serviceniveau. Als het doel 90% was en 853 van de 1.000 eenheden winnen, dan is het bereikte serviceniveau 85.3%.

Voorbeeld

Overweeg een voorbeeld uit de echte wereld. De gegevens zijn dagelijkse vraaggeschiedenissen van 590 medische artikelen die worden gebruikt in een internationaal bekende kliniek. Voor de eenvoud gaan we ervan uit dat elk artikel een levertijd heeft van 45 dagen. We evalueren beoogde serviceniveaus van 70%, 90%, 95% en 99%.
We vergelijken twee vraagmodellen. Het "Normale" model gaat ervan uit dat de dagelijkse vraag een normale ("klokvormige") verdeling heeft. Dit is de klassieke aanname die wordt gebruikt in de meeste inleidende leerboeken over voorraadbeheer en in veel softwareproducten. Hoe klassiek het ook mag zijn, het is vaak een ongepast model van de vraag naar reserveonderdelen of voorraden. Het “Probability Forecast”-model houdt expliciet rekening met de intermitterende aard van de vraag.

Bijlage 1 toont de resultaten. Kolom J toont de werkelijke vraag over de laatste 45 waarnemingen. De berekende bestelpunten voor het geavanceerde model worden weergegeven in kolommen LO. De berekende bestelpunten voor het model Normaal worden niet weergegeven. De kolommen QT en VY bevatten de resultaten van de tests om na te gaan of de bestelpunten hoog genoeg waren om de doorlooptijdvereisten in kolom J aan te kunnen.

De uiteindelijke resultaten (gele cellen) laten een duidelijk verschil zien tussen de vraagmodellen Normal en Probability (Advanced). Beiden hebben het 70%-serviceniveaudoel goed bereikt, maar het schatten van hogere serviceniveaus is een meer delicate berekening en het waarschijnlijkheidsmodel doet het veel beter. Het veronderstelde 99%-serviceniveau van het Normal-model bleek bijvoorbeeld slechts 94.4% te zijn, terwijl het Probability-model het doel bereikte met een 98.5% bereikt serviceniveau.

Implicaties

Met de meer nauwkeurige methode werd het beoogde serviceniveau bereikt, terwijl dat met de minder nauwkeurige methode niet het geval was. Als de minder nauwkeurige methode wordt gebruikt, zullen echte en kostbare zakelijke beslissingen worden genomen in de valse veronderstelling dat een hoger serviceniveau zal worden bereikt. Als er bijvoorbeeld een Service Level Agreement (SLA) is gebaseerd op deze resultaten en een 99%-serviceniveau is vastgelegd, is de kans dat de leverancier een voorraad oploopt vijf keer groter dan gepland (beloofd serviceniveau = 99%- of 1%-voorraadrisico vs. serviceniveau bereikt = 94.5% of 5.5% stock out risico)! Dit betekent dat boetes vijf keer vaker worden opgelegd dan verwacht.

Stel dat planners wisten dat het beoogde serviceniveau niet zou worden gehaald, maar vast kwamen te zitten met een onnauwkeurig model. Ze zouden nog steeds een manier nodig hebben om de voorraad te vergroten en het gewenste serviceniveau te bereiken. Wat zouden ze kunnen kiezen om te doen? We hebben situaties waargenomen waarin de planner een hoger doel voor het serviceniveau invoert dan nodig is om het systeem te "misleiden" om het vereiste serviceniveau te leveren. In het bovenstaande voorbeeld moest het Normal-model een 99.99%-serviceniveau hebben ingevoerd voordat het een doelserviceniveau van 99% kon bereiken. Deze wijziging resulteerde in het bereiken van een 99%-service, maar meer dan een verdubbeling van de voorraadinvestering in vergelijking met het geavanceerde model.

Het implementeren van een nauwkeurigheidstest op serviceniveau

Bij Smart Software hebben we veel van onze klanten aangemoedigd om de test van de nauwkeurigheid van het serviceniveau uit te voeren als een manier voor hen om onze claims en die van andere leveranciers te beoordelen tijdens het softwareselectieproces. Het niet halen van de service level target heeft uiterst kostbare implicaties, resulterend in substantiële over- of ondervoorraden. Test dus de nauwkeurigheid van het serviceniveau voordat u een oplossing implementeert om situaties te identificeren waarin de modellering mislukt. Ga er niet vanuit dat u het serviceniveau bereikt dat u besluit te targeten (of dat het systeem aanbeveelt). Als u een Excel-spreadsheet wilt aanvragen die dient als sjabloon voor een nauwkeurigheidstest op serviceniveau, e-mailt u uw contactgegevens naar info@smartcorp.com en voert u "Nauwkeurigheidssjabloon" in de onderwerpregel in.

Laat een reactie achter

gerelateerde berichten

Head to Head: welk voorraadbeleid voor serviceonderdelen is het beste?

Head to Head: welk voorraadbeleid voor serviceonderdelen is het beste?

Onze klanten hebben doorgaans gekozen voor één manier om hun voorraad serviceonderdelen te beheren. De professor in mij zou graag willen denken dat het gekozen voorraadbeleid een beredeneerde keuze was uit de weloverwogen alternatieven, maar het is waarschijnlijker dat het gewoon zo is gebeurd. Misschien had de inventarishoncho van lang geleden een favoriet en bleef die keuze hangen. Misschien gebruikte iemand een EAM- of ERP-systeem dat maar één keuze bood. Misschien zijn er enkele gissingen gedaan, gebaseerd op de toenmalige omstandigheden.

Maak gebruik van ERP-planningstuklijsten met slimme IP&O om het onvoorspelbare te voorspellen

Maak gebruik van ERP-planningstuklijsten met slimme IP&O om het onvoorspelbare te voorspellen

In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten zal enorm stijgen als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk afzonderlijk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende ERP-oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in ERP, en hoe u hiervan kunt profiteren met Smart Inventory Planning en Optimization (Smart IP&O) om in het licht van deze complexiteit uw vraag voor te blijven.

Vind uw plek op de afwegingscurve

Vind uw plek op de afwegingscurve

Bij voorraadbeheer gaat het, net als bij alles, om het balanceren van concurrerende prioriteiten. Wilt u een lean inventaris? Ja! Wil jij kunnen zeggen “Het is op voorraad” als een klant iets wil kopen? Ja!
Maar kun je het op beide manieren hebben? Slechts tot op zekere hoogte. Als u uw voorraad te agressief aanpast, riskeert u voorraadtekorten. Als je voorraadtekorten uitroeit, creëer je een opgeblazen voorraad. U wordt gedwongen een bevredigend evenwicht te vinden tussen de twee concurrerende doelen: een beperkte voorraad en een hoge beschikbaarheid van artikelen.

recente berichten

  • De doelstellingen bij het voorspellenDe doelstellingen bij het voorspellen
    Een voorspelling is een voorspelling over de waarde van een tijdreeksvariabele op een bepaald moment in de toekomst. U kunt bijvoorbeeld een schatting willen maken van de verkoop of vraag van een product voor volgende maand. Een tijdreeks is een reeks getallen die met gelijke tijdsintervallen zijn geregistreerd; bijvoorbeeld de maandelijks geregistreerde verkoop per eenheid. De doelstellingen die u nastreeft wanneer u prognoses maakt, zijn afhankelijk van de aard van uw baan en uw bedrijf. Elke voorspelling is onzeker; in feite is er een reeks mogelijke waarden voor elke variabele die u voorspeld. Waarden in het midden van dit bereik hebben een grotere kans dat ze daadwerkelijk voorkomen, terwijl waarden aan de uiteinden van het bereik minder waarschijnlijk voorkomen. […]
  • Slim softwarepartnerschap met Sage voor voorraadoptimalisatie en vraagvoorspellingSmart Software kondigt strategisch partnerschap aan met Sage voor voorraadoptimalisatie en vraagvoorspelling
    Smart Software kondigt vandaag hun strategische samenwerking met Sage aan. Deze samenwerking brengt Smart IP&O (Inventory Planning and Optimization) naar de nieuwste cloud- en on-premises versies van Sage X3, Sage 300 en Sage 100. […]
  • Hoofd-tot-hoofd Welk voorraadbeleid voor serviceonderdelen de beste software isHead to Head: welk voorraadbeleid voor serviceonderdelen is het beste?
    Onze klanten hebben doorgaans gekozen voor één manier om hun voorraad serviceonderdelen te beheren. De professor in mij zou graag willen denken dat het gekozen voorraadbeleid een beredeneerde keuze was uit de weloverwogen alternatieven, maar het is waarschijnlijker dat het gewoon zo is gebeurd. Misschien had de inventarishoncho van lang geleden een favoriet en bleef die keuze hangen. Misschien gebruikte iemand een EAM- of ERP-systeem dat maar één keuze bood. Misschien zijn er enkele gissingen gedaan, gebaseerd op de toenmalige omstandigheden. […]
  • Het prognoseproces voor besluitvormersHet prognoseproces voor besluitvormers
    In bijna elk bedrijf en elke branche hebben besluitvormers betrouwbare voorspellingen nodig van cruciale variabelen, zoals omzet, inkomsten, vraag naar producten, voorraadniveaus, marktaandeel, kosten en trends in de sector. Er zijn veel soorten mensen die deze voorspellingen maken. Sommigen zijn geavanceerde technische analisten, zoals bedrijfseconomen en statistici. Vele anderen beschouwen forecasting als een belangrijk onderdeel van hun totale werk: algemeen managers, productieplanners, voorraadbeheerspecialisten, financiële analisten, strategische planners, marktonderzoekers en product- en verkoopmanagers. Toch beschouwen anderen zichzelf zelden als voorspellers, maar moeten ze vaak voorspellingen doen op een intuïtieve, oordelende basis. […]
  • Succesverhaal: Procon Pumps gebruikt Smart Demand Planner om de bedrijfsvoering draaiende te houdenProcon Pumps gebruikt Smart Demand Planner om de bedrijfsvoering draaiende te houden
    De geavanceerde analyses van het slimme platform en de soepele integratie met het ERP-systeem van Procon leidden tot nauwkeurige prognoses en optimale voorraadniveaus. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Vraag naar reserveonderdelen voorspellen-een-ander-perspectief-voor-planning-service-onderdelenDe voorspelling is belangrijk, maar misschien niet zoals u denkt
      Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja. […]
    • Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraadWaarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad
      Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien. […]
    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]