Slimme software om de doorvoer van New Jersey te helpen de voorraadplanning en de beschikbaarheid van serviceonderdelen te verbeteren

Belmont, Massachusetts, 13 juni 2013 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat New Jersey Transit (NJT) het vlaggenschipproduct van Smart, SmartForecasts, heeft gekocht®, voor haar spoor- en busactiviteiten als onderdeel van een bedrijfsbreed programma voor serviceverbetering en voorraadvermindering. NJT is de op twee na grootste aanbieder van bus-, spoor- en lightrailvervoer van het land en verbindt belangrijke punten in New Jersey, New York en Philadelphia.

NJT zal SmartForecasts gebruiken om het verbruik van onderdelen en de benodigde voorraadvoorraad te voorspellen voor zijn 40.000 actieve reserve- en serviceonderdelen, ter waarde van meer dan $100 miljoen. Een groot deel van de voorraad van NJT heeft te maken met een grillige, intermitterende vraag die bijzonder moeilijk te voorspellen is en kan leiden tot een aanzienlijke over- en onderbevoorrading van kritieke onderdelen. De eerste resultaten met SmartForecasts wijzen op het potentieel voor substantiële besparingen en verbeteringen in het serviceniveau, zodra de volledige implementatie is voltooid.

Smart Software zal het NJT-project in twee fasen uitvoeren. De eerste fase zal zich richten op het gebruik van SmartForecasts om onmiddellijke voordelen op korte termijn voor belangrijke groepen onderdelen te identificeren, en om de waarschijnlijke voordelen op lange termijn voor NJT te meten. In de tweede fase wordt SmartForecasts geïntegreerd in de dagelijkse planningsomgeving van New Jersey Transit.

SmartForecasts biedt unieke, gepatenteerde statistische oplossingen voor het voorspellen van een intermitterende vraag, een bijzonder uitdagend aspect van het beheer van serviceonderdelen, evenals een complete suite van geautomatiseerde prognose- en planningsmethodologieën. Door automatisch de juiste methode voor elk onderdeel te identificeren, kan SmartForecasts de hoeveelheid voorraad die nodig is om aan een bepaald serviceniveau te voldoen, aanzienlijk verminderen.

"We hebben verschillende zeer sterke successen behaald door transportsystemen te helpen hun onderdelenvoorraadplanning te verbeteren en hun klanten betere service te bieden met een betere beschikbaarheid van onderdelen", aldus Nelson Hartunian, CEO van Smart Software. “Organisaties zoals New Jersey Transit zoeken naar manieren om hen te helpen hun kosten te verlagen zonder de klantenservice negatief te beïnvloeden. Nu het aantal passagiers toeneemt, wordt dit steeds belangrijker. We kijken ernaar uit om NJT te helpen zijn doelen te bereiken.”

Over de doorvoer van New Jersey
NJ TRANSIT is het openbaarvervoerbedrijf van New Jersey. Haar missie is om veilige, betrouwbare, handige en kosteneffectieve vervoersdiensten te bieden met een bekwaam team van medewerkers, toegewijd aan de behoeften van onze klanten en toegewijd aan uitmuntendheid. Met een servicegebied van 5.325 vierkante mijl is NJ Transit de op twee na grootste aanbieder van bus-, spoor- en lightrailvervoer van het land, die belangrijke punten in New Jersey, New York en Philadelphia met elkaar verbindt. Het bureau exploiteert een vloot van 2.027 bussen, 711 treinen en 45 lightrailvoertuigen. Op 236 busroutes en 11 spoorlijnen over de hele staat verzorgt NJ Transit jaarlijks bijna 223 miljoen passagiersreizen. Daarnaast biedt het bureau ondersteuning en uitrusting aan particuliere contractbusvervoerders. Klik voor meer informatie over NJ Transit hier.

Over Smart Software, Inc.
Smart Software, Inc., opgericht in 1981, is een toonaangevende leverancier van ondernemingsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie. Het paradepaardje van Smart Software, SmartForecasts, heeft wereldwijd duizenden gebruikers, waaronder klanten van middelgrote ondernemingen en Fortune 500-bedrijven, zoals Abbott Laboratories, Metro-North Railroad, Siemens, Disney, Nestle, Nikon, GE en The Coca-Cola Company . Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is online te vinden op www.smartsoftware.wpengine.com .

SmartForecasts is een geregistreerd handelsmerk van Smart Software, Inc. Alle andere handelsmerken zijn het eigendom van hun respectievelijke eigenaars.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAXEN: 1-617-489-2748; E-mailadres: info@smartsoftware.wpengine.com

Voorlopende indicatoren kunnen een voorbode zijn van de vraag

De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

De meeste statistische prognoses werken in één directe stroom van gegevens uit het verleden naar prognoses. Voorspellen met voorlopende indicatoren werkt op een andere manier. Een leidende indicator is een tweede variabele die van invloed kan zijn op degene die wordt voorspeld. Het toepassen van toetsbare menselijke kennis over de voorspellende kracht in de relatie tussen deze verschillende gegevenssets levert soms superieure nauwkeurigheid op.

Meestal is een prognose uitsluitend gebaseerd op de geschiedenis van het item dat wordt voorspeld. Laten we aannemen dat het probleem van de voorspeller is om de toekomstige verkoop per eenheid van een belangrijk product te voorspellen. Het proces begint met het verzamelen van gegevens over de eerdere verkopen van het product. (Gregory Hartunian deelt wat praktisch advies over het kiezen van de best beschikbare data in een eerder bericht op de Smart Forecaster.) Deze gegevens stromen naar prognosesoftware, die het verkooprecord analyseert om het niveau van willekeurige variabiliteit te meten en alle voorspelbare aspecten te benutten, zoals trend of regelmatige patronen van seizoensvariabiliteit. De prognose is volledig gebaseerd op het gedrag in het verleden van het artikel dat wordt voorspeld. Er wordt expliciet rekening gehouden met niets dat het schommelen en schudden in de verkoopgrafiek van het product zou kunnen hebben veroorzaakt. Deze aanpak is snel, eenvoudig, op zichzelf staand en schaalbaar, omdat software automatisch door een groot aantal prognoses kan bladeren.

Maar soms kan de voorspeller het beter doen, ten koste van meer werk. Als de voorspeller door de mist van willekeur kan kijken en een tweede variabele kan identificeren die van invloed is op degene die wordt voorspeld, een leidende indicator, zijn nauwkeurigere voorspellingen mogelijk.

Stel dat het product vensterglas voor woningen is. Het is goed mogelijk dat stijgingen of dalingen van het aantal bouwvergunningen voor nieuwbouwwoningen enkele maanden later worden weerspiegeld in overeenkomstige stijgingen of dalingen van het aantal bestelde glasplaten. Als de voorspeller deze "vertraagde" of vertraagde relatie in een vergelijking kan destilleren, kan die vergelijking worden gebruikt om de glasverkoop over enkele maanden te voorspellen, dus met behulp van bekende waarden van de leidende indicator. Deze vergelijking wordt een "regressievergelijking" genoemd en heeft de vorm zoiets als:

Verkoop van glas in 3 maanden = 210,9 + 26,7 × Aantal woningen start deze maand.

Voorspellingssoftware kan de gegevens over de start van de woningbouw en de glasverkoop omzetten in zo'n regressievergelijking.

Grafiek met een relatie tussen voorbeeldcijfers voor verschoven bouwvergunningen en de vraag naar glas
Voorlopende indicatoren aangetoond
In tegenstelling tot automatische statistische prognoses op basis van de eerdere verkopen van een product, stuit prognoses met een voorlopende indicator echter op hetzelfde probleem als het spreekwoordelijke recept voor konijnenstoofpot: "Vang eerst een konijn". Hier is de inhoudelijke expertise van de voorspeller cruciaal voor succes. De forecaster moet één of meerdere kandidaten kunnen voordragen voor de functie van leading indicator. Na deze cruciale stap kan op basis van de kennis, ervaring en intuïtie van de voorspeller software worden gebruikt om te verifiëren dat er werkelijk een voorspellende, tijdvertraagde relatie bestaat tussen de kandidaat-voorlopende indicator en de te voorspellen variabele.

Deze verificatiestap wordt uitgevoerd met behulp van een "kruiscorrelatie"-analyse. De software neemt in wezen als invoer een reeks waarden van de te voorspellen variabele en een andere reeks waarden van de veronderstelde leidende indicator. Vervolgens schuift het de gegevens van de voorspellingsvariabele vooruit met achtereenvolgens een, twee, drie, etc. tijdsperioden. Bij elke slip in de tijd (een "lag" genoemd, omdat de leidende indicator steeds verder achterloopt op de voorspellingsvariabele), controleert de software op een associatiepatroon tussen de twee variabelen. Als het een patroon vindt dat te sterk is om te worden verklaard als een statistisch ongeval, wordt het vermoeden van de voorspeller bevestigd.

Het is duidelijk dat prognoses met voorlopende indicatoren meer werk zijn dan prognoses met alleen de eigen waarden uit het verleden van een item. De voorspeller moet een leidende indicator identificeren, te beginnen met een lijst die wordt voorgesteld door de vakkennis van de voorspeller. Dit is een "handgemaakt" proces dat niet geschikt is voor massaproductie van prognoses. Maar het kan een succesvolle aanpak zijn voor een kleiner aantal belangrijke items die de extra moeite waard zijn. De rol van prognosesoftware, zoals ons SmartForecasts-systeem, is om de voorspeller te helpen de leidende indicator te verifiëren en deze vervolgens te benutten.

Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Belangrijke overwegingen bij het evalueren van de prognosemogelijkheden van uw ERP-systeem

Belangrijke overwegingen bij het evalueren van de prognosemogelijkheden van uw ERP-systeem

Overweeg wat wordt bedoeld met "vraagbeheer", "vraagplanning" en "prognoses". Deze termen impliceren bepaalde standaardfunctionaliteit voor samenwerking, statistische analyse en rapportage ter ondersteuning van een professioneel vraagplanningsproces. In de meeste ERP-systemen echter, "vraagbeheer" waarbij MRP wordt uitgevoerd en vraag en aanbod worden afgestemd met het oog op het plaatsen van bestellingen

De top 5 mythes over implementaties van vraagplanning

De top 5 mythes over implementaties van vraagplanning

We hoeven alleen onze vraaggeschiedenis in onze nieuwe statistische methoden in te voeren en we kunnen effectiever gaan plannen. Niet helemaal: het gaat om de technologie en het proces. U investeert in een nieuw bedrijfsproces om prognoses te ontwikkelen voor het aansturen van bedrijfsstrategie en voorraadplanningsbeslissingen.

De juiste prognosenauwkeurigheidsmetriek voor voorraadplanning

De juiste prognosenauwkeurigheidsmetriek voor voorraadplanning

Het testen van softwareoplossingen via een reeks van empirische concurrentie kan een aantrekkelijke optie zijn. In het geval van prognoses en vraagplanning is een traditionele "hold-out"-test een goede manier om de nauwkeurigheid van de maandelijkse of wekelijkse prognose te beoordelen, maar het is minimaal nuttig als u een ander doel heeft: het optimaliseren van de voorraad.

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Lessen van superstorm Sandy

      De slimme voorspeller

      Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      De vernietigende impact van de orkaan Sandy is zowel onthutsend als leerzaam geweest. Onze gedachten en beste wensen voor een spoedig herstel gaan uit naar iedereen die persoonlijk of economisch verlies of schade heeft geleden. Nu, in de nasleep van Sandy, merken we dat we nadenken over het versnellen van herstel en het plannen van de volgende onvoorziene gebeurtenis.

      Ons werk met klanten in de zwaar getroffen massatransportsector gaf een ontnuchterend beeld van beschadigde infrastructuur, zwaar materieel en verlies van essentiële inventaris. Degenen die het meest getroffen zijn, hebben een enorme hoeveelheid werk gezien terwijl voorraadbeheerders de balans opmaken van wat ze hebben en nodig hebben en een berg vervangende onderdelen en producten aanschaffen. Deze unieke massale aanvullingscyclus biedt allerlei kansen en overwegingen. Voor degenen die zich nog in deze fase bevinden, en om onze collectieve voorbereiding op het volgende grote evenement te helpen, zijn hier een paar gedachten:

      Mogelijkheid om direct “juiste maat” inventaris op te maken

      Mogelijk kunt u een grote, eenmalige financiering voor vervangende inventaris ontvangen. Het kan verzekeringsgeld zijn, federale hulp of regenachtige dagfondsen uit uw eigen schatkist. Gebruik de financiering om de best mogelijke voorraadmix vast te stellen. Bestel niet volgens eerder vastgestelde min/max-niveaus. Als u dat wel doet, kunnen excessen en tekortkomingen uit het verleden eenvoudig worden herhaald.

      Een groot evenement als Sandy biedt een zeldzame kans om je inventaris te transformeren. Begin met een nauwkeurige vraagprognose over de bevoorradingsperiode en genereer veiligheidsvoorraden en bestelpunten die aan uw kritieke behoeften voldoen. Dit kan in enkele uren of dagen worden gerealiseerd. Gewoonlijk kan het implementeren van optimale voorraadniveaus over meerdere jaren plaatsvinden, aangezien overtollige voorraad geleidelijk wordt uitgeput. Nu heb je echter een eenmalige kans om naar het juiste antwoord te springen. Deze verschuiving kan de uitgaven voor aanvulling aanzienlijk verminderen, waardoor honderdduizenden dollars vrijkomen voor andere, meer kritieke hersteldoeleinden.

      Prioriteit geven aan aan te vullen klassen

      Wees duidelijk over wat u nodig heeft voor cruciale operaties en geef prioriteit aan uw aanvulling. Welke onderdelen hebben een lange doorlooptijd en welke zijn direct leverbaar? Het is duidelijk dat artikelen met een korte doorlooptijd in fasen kunnen worden aangeschaft - nu net genoeg krijgen, waardoor er geld beschikbaar komt voor de artikelen met een langere doorlooptijd.

      Bepaal hoeveel "net genoeg" is

      Dit is waar een nauwkeurige vraagprognose, veiligheidsvoorraden en bestelpuntberekeningen een rol spelen. Denk aan het serviceniveau dat u nodig heeft - de waarschijnlijkheid dat producten in de schappen liggen wanneer u ze nodig hebt - wat in feite uw tolerantie voor risico's is. Doe dit voor elk item of elke klasse items. Dit zal u vertellen hoeveel veiligheidsvoorraad u, naast uw verwachte doorlooptijdprognose, bij de hand moet hebben. Door te herhalen op op serviceniveau gebaseerde vereisten, kunt u de waarde van het beschikbare aanvullingsbudget maximaliseren.

      Statistische prognoses voor Intermittent demand versus 'vuistregel'-methoden

      Dit is het moment om over te stappen van 'de manier waarop we het hebben gedaan' naar het meest nauwkeurige proces voor vraagprognoses en voorraadoptimalisatie dat voor u beschikbaar is. Voor een grotere voorspellingsnauwkeurigheid is minder veiligheidsvoorraad nodig, wat opnieuw voorraaddollars beschikbaar maakt voor andere gebruikers. De grootste afzonderlijke categorie voor verbetering is intermitterende vraag. De meeste organisaties passen hiervoor geen solide statistische methoden toe, maar nemen hun toevlucht tot de 'zware hamerregel': ze hebben veel bij de hand omdat niemand het weet. Hier is een gebied waar SmartForecasts bijzonder bedreven in is, met een gepatenteerde oplossing voor het voorspellen van intermitterende vraag. De resulterende veiligheidsvoorraadaanbevelingen bereikten het serviceniveaudoel bijna 100% van de tijd. Als u dit goed doet, bespaart u nu veel uitgaven en wordt de kans op overtollige, verouderde voorraad in de toekomst geminimaliseerd.

      Nelson Hartunian, PhD, was medeoprichter van Smart Software, was voorheen President en houdt er momenteel toezicht op als voorzitter van de raad van bestuur. Hij heeft op verschillende momenten leiding gegeven aan softwareontwikkeling, verkoop en klantenservice.

      Laat een reactie achter

      gerelateerde berichten

      Omgaan met extreme supply chain-variaties bij Rev-A-Shelf

      Omgaan met extreme supply chain-variaties bij Rev-A-Shelf

      Heeft uw uitgebreide toeleveringsketen last van extreme seizoensvariabiliteit? Vormt deze situatie een uitdaging voor uw vermogen om te voldoen aan de serviceniveauverplichtingen aan uw klanten? Ik heb hiermee geworsteld bij Rev-A-Shelf, waarbij ik me bezig hield met ongebruikelijke omstandigheden die zijn gecreëerd door Chinees Nieuwjaar en andere wereldwijde evenementen, en ik wil graag de ervaring en een paar dingen die ik onderweg heb geleerd delen.

      Aanbevolen lectuur: Cloudsoftware helpt budgetbeperkingen te overwinnen

      Aanbevolen lectuur: Cloudsoftware helpt budgetbeperkingen te overwinnen

      Smart Software heeft onlangs een Software as a Service (SaaS)-optie aangekondigd voor SmartForecasts—SFCloud™. Op locatie gebaseerde eeuwigdurende licenties zullen voor veel organisaties de voorkeursmethode voor software-implementatie blijven, maar er zijn veel redenen waarom de vraag naar cloudgebaseerde oplossingen een vlucht neemt. Een oud bericht van Bill Richardson op ApplicantStack Team Blog vat de belangrijkste voordelen van het SaaS-model samen.

      Waarheid in prognoses: praktisch advies aan het einde van het jaar

      Waarheid in prognoses: praktisch advies aan het einde van het jaar

      Aan het einde van het jaar zijn we vaak bezig met nadenken en plannen maken voor het komende jaar. Is 2013 verlopen zoals je had verwacht? Zal 2014 dramatisch anders zijn? Zijn er andere factoren - dingen die we van plan zijn te doen; dingen waarvan we denken dat onze concurrenten ze zouden kunnen doen; krachten van buitenaf, zoals veranderende smaak, demografie of economie, die de gang van zaken in het komende jaar kunnen veranderen?

      recente berichten

      • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          Het gemiddelde is niet het antwoord

          De slimme voorspeller

          Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Fluctuaties in de toeleveringsketen van een voorraad zijn onvermijdelijk. Willekeur, die een bron van verwarring en frustratie kan zijn, garandeert dit. Een schip met goederen uit China kan vertraging oplopen door een storm op zee. Een plotselinge toename van de vraag op een dag kan de voorraad in één dag wegvagen, waardoor u niet meer aan de vraag van de volgende dag kunt voldoen. Willekeur zorgt voor fricties die het moeilijk maken om je werk te doen.

          Op het eerste gezicht lijkt het soms het beste om op willekeur te reageren met de struisvogelbenadering: kop in het zand. U kunt genoegen nemen met een voorspelling en ervan uitgaan dat de voorspelling altijd klopt. De fout in die benadering is dat het statistische methoden negeert die ons in staat stellen gebruik te maken van een schat aan kennis over onze kennis zelf - hoeveel vertrouwen we kunnen hebben in onze voorspellingen en met welke brede mogelijkheden we worden geconfronteerd. De efficiënte aanpak van de problemen die voortkomen uit willekeur is niet om onzekerheid te negeren, maar om deze met open ogen te omarmen.

          Als een fundamenteel principe van Smart Software's benadering van voorspelling, zullen we u altijd een beoordeling geven van de mate van onzekerheid in prognoses. Als u niets meer verwacht dan een absoluut cijfer - de vraag naar widgets in februari zal 120 eenheden zijn - kunt u het toegevoegde element van onzekerheid afdoen als negatief, of het vertrouwen verliezen in een voorspelling waarvan u had gehoopt dat deze definitief zou zijn. Maar we pleiten voor wat wij beschouwen als de benadering voor volwassenen; u moet weten wat u riskeert wanneer u zich aan een prognose houdt en uw besluitvorming daarop baseert.

          Uw prognoses kunnen grote gevolgen hebben die verder gaan dan voorraadniveaus. Ze kunnen uw behoeften aan grondstoffen of personeelsniveau bepalen - prognoses zijn de drijvende kracht achter veel belangrijke beslissingen over de toewijzing van middelen. Als u te veel vertrouwen heeft in de meest waarschijnlijke uitkomst, zonder ook specifiek te overwegen hoe waarschijnlijk het is, begrijpt u de risico's waarmee u wordt geconfronteerd niet echt en kunt u uzelf in een precaire positie brengen.

          De noodzaak om volledig geïnformeerde beslissingen te nemen, dwingt ons om in een prognose het plus/minus bereik van resultaten te zien met een bepaalde waarschijnlijkheid van voorkomen. In het specifieke geval van prognoses die in voorraadsystemen gaan, is dit een belangrijk onderdeel van het opzettelijk plannen voor onvoorziene gebeurtenissen. Zo bepaalt u niet alleen de voorraad die u moet aanhouden om aan de typische vraag te voldoen, maar ook de extra voorraad die u bij de hand moet hebben om de meest onverwachte uitkomsten op te vangen.

          Dit belang neemt alleen maar toe wanneer u probeert een betrouwbare voorraad kritieke reserveonderdelen aan te houden. Tussen de kosten van het opslaan van extra inventaris en het rekening houden met de mate van betrouwbaarheid van uw prognoses, is er een balans die zich uitkristalliseert wanneer een vliegtuig dat u in de lucht nodig heeft aan de grond staat, omdat u geen vervanging voor een beschadigd onderdeel heeft.

          (Terwijl het aanleggen van extra voorraad afhankelijk is van de bovenkant van het onzekerheidsbereik, wordt als de cashflow krap is, de onderkant van het bereik belangrijk. Treasury-minded gebruikers vinden waarde in deze andere kant van onzekerheid in scenario's waarin zelfs minimale overbevoorrading kan bijvoorbeeld meer een probleem zijn dan een gemiste verkoopkans. Betrouwbare informatie over de minst waarschijnlijke uitkomsten loont op dit moment.)

          Inventaristheorie zegt dat je moet nadenken over de uiteinden van waarschijnlijke mogelijkheden en je moet voorbereiden om met meer scenario's om te gaan dan alleen wat het meest waarschijnlijk is. Willekeur is een realiteit die niet kan worden genegeerd. Het gemiddelde is niet het antwoord.

          Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

          Laat een reactie achter

          gerelateerde berichten

          Belangrijke overwegingen bij het evalueren van de prognosemogelijkheden van uw ERP-systeem

          Belangrijke overwegingen bij het evalueren van de prognosemogelijkheden van uw ERP-systeem

          Overweeg wat wordt bedoeld met "vraagbeheer", "vraagplanning" en "prognoses". Deze termen impliceren bepaalde standaardfunctionaliteit voor samenwerking, statistische analyse en rapportage ter ondersteuning van een professioneel vraagplanningsproces. In de meeste ERP-systemen echter, "vraagbeheer" waarbij MRP wordt uitgevoerd en vraag en aanbod worden afgestemd met het oog op het plaatsen van bestellingen

          De top 5 mythes over implementaties van vraagplanning

          De top 5 mythes over implementaties van vraagplanning

          We hoeven alleen onze vraaggeschiedenis in onze nieuwe statistische methoden in te voeren en we kunnen effectiever gaan plannen. Niet helemaal: het gaat om de technologie en het proces. U investeert in een nieuw bedrijfsproces om prognoses te ontwikkelen voor het aansturen van bedrijfsstrategie en voorraadplanningsbeslissingen.

          De juiste prognosenauwkeurigheidsmetriek voor voorraadplanning

          De juiste prognosenauwkeurigheidsmetriek voor voorraadplanning

          Het testen van softwareoplossingen via een reeks van empirische concurrentie kan een aantrekkelijke optie zijn. In het geval van prognoses en vraagplanning is een traditionele "hold-out"-test een goede manier om de nauwkeurigheid van de maandelijkse of wekelijkse prognose te beoordelen, maar het is minimaal nuttig als u een ander doel heeft: het optimaliseren van de voorraad.

          recente berichten

          • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

              Smart Software bekroond met National Science Foundation Innovation Research Grant
              Nieuw onderzoek om de planning van service en reserveonderdelen te verbeteren voor de luchtvaart-, automobiel-, hightech- en nutsmarkten met een miljardenomzet Belmont, Massachusetts, 28 november 2012 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat het een Phase I Small Business Innovation Research (SBIR)-subsidie heeft ontvangen van de National Science Foundation (NSF). Smart Software zal nieuwe statistische methodes onderzoeken om de intermitterende vraag te voorspellen, met als uiteindelijk doel ondernemingen over de hele wereld te helpen hun voorraden met tientallen miljarden dollars te verminderen. Het nieuwe onderzoek zal voortbouwen op de gepatenteerde oplossing van Smart Software voor het voorspellen van een langzaam bewegende of intermitterende vraag, ontwikkeld met de steun van een eerdere NSF-subsidie. De huidige methode, gecommercialiseerd als onderdeel van het vlaggenschipproduct van het bedrijf, SmartForecasts®, evalueert de historische vraag naar elk artikel en stelt het optimale voorraadniveau vast dat nodig is om de serviceniveaudoelstellingen te bereiken. Het nieuwe onderzoek probeert de vraagvoorspelling uit te breiden tot voorbij individuele producten en onderdelen, door interacties te identificeren en te interpreteren tussen clusters van items waarvan de vraag samen fluctueert. De nieuwe prognosemogelijkheden zullen klanten op verschillende belangrijke manieren ten goede komen:
              • Een dynamischer statistisch model van onderdelen zal prognoses in staat stellen om een verscheidenheid aan externe factoren beter weer te geven, waaronder het gebruik van onderdelen op zichzelf of in combinatie met andere producten, evenals de impact van macro-economische en omgevingsfactoren.
              • Onderzoeksresultaten zullen planners voorzien van een dynamisch model van itemgebruik, waardoor planners functionele kaarten kunnen ontwikkelen van de onderlinge relaties van grote aantallen onderdelen. Weten welke onderdelen vereisten hebben die co-variabel zijn, kan op ten minste twee manieren nuttig zijn. Ten eerste kunnen itemmanagers worden toegewezen om met coherente clusters te werken in plaats van willekeurige verzamelingen van diverse onderdelen, en ten tweede kunnen onderdelen in magazijnen worden ondergebracht voor een efficiëntere opslag en ophalen.
              • Een ander voordeel van deze nieuwe aanpak zijn verbeterde prognoses van "aggregaten" waar een intermitterende vraag aanwezig is, zoals alle artikelen in een productlijn of alle artikelen in een bepaald magazijn. Betere prognoses van de totale vraag over groepen onderdelen zullen ook nuttig zijn voor de inkoop van grondstoffen, evenals voor financiële planning wanneer onderdelen een bron van inkomsten zijn.
              Volgens Nelson Hartunian, president van Smart Software: “Elke organisatie die kapitaalgoederen bouwt of ondersteunt, heeft te maken met een periodieke vraag naar een deel van haar inventaris. Deze subsidie is een geweldige kans om invloed uit te oefenen op een van de grootste prognose-uitdagingen waarmee deze organisaties worden geconfronteerd: het nauwkeurig voorspellen van onderdelen en het optimaliseren van voorraden. Uiteindelijk is het doel om het juiste onderdeel op het juiste moment op de juiste plaats te hebben. Het onderzoek dat we doen, zal dit doel beter haalbaar maken.” Het subsidieprogramma Small Business Innovation Research van de National Science Foundation is zeer concurrerend. Meer dan duizend bedrijven strijden tegen elkaar in een screening in twee fasen: één op intellectuele verdienste en één op commercieel potentieel. Deze Fase 1 subsidie is de derde die Smart Software heeft ontvangen. Over Smart Software, Inc. Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. Het vlaggenschipproduct van Smart Software, SmartForecasts, heeft duizenden gebruikers over de hele wereld, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Abbott Laboratories, Mitsubishi, Siemens, Disney, Nestle, GE en The Coca-Cola Company. SmartForecasts biedt vraagplanners de middelen om met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederenartikelen om te gaan. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartsoftware.wpengine.com. SmartForecasts is een geregistreerd handelsmerk van Smart Software, Inc. Alle andere handelsmerken zijn het eigendom van hun respectievelijke eigenaars.
              Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478. Telefoon: 1-800-SMART-99 (800-762-7899); FAXEN: 1-617-489-2748; E-mailadres: info@smartsoftware.wpengine.com