De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Heeft uw uitgebreide toeleveringsketen last van extreme seizoensvariabiliteit? Vormt deze situatie een uitdaging voor uw vermogen om te voldoen aan de serviceniveauverplichtingen aan uw klanten? Ik heb hiermee geworsteld bij Rev-A-Shelf, waarbij ik me bezig hield met ongebruikelijke omstandigheden die zijn gecreëerd door Chinees Nieuwjaar en andere wereldwijde evenementen, en ik wil graag de ervaring en een paar dingen die ik onderweg heb geleerd delen.

Laat me eerst onze situatie uitleggen. We importeren 60% van de onderdelen die we gebruiken om onze keuken- en badaccessoires te bouwen uit China en Europa. Het grootste deel van het jaar waren we in staat om onze voorraadbehoeften te plannen met behulp van een op spreadsheets gebaseerde min/max-aanpak. Maar niet tijdens Chinees Nieuwjaar, dat de grootste jaarlijkse bevolkingsmigratie van de planeet veroorzaakt. Chinees Nieuwjaar legt de productie tot twee maanden stil, wat een aanzienlijk leveringsrisico met zich meebrengt terwijl we ernaar streven om onze driedaagse orderafhandelingsverplichting na te komen.

We hebben ons probleem opgelost door statistische vraagprognoses te introduceren met de flexibiliteit om doorlooptijden te verlengen indien nodig, de mogelijkheid om op betrouwbare wijze veiligheidsvoorraden aan te leggen die onze vereiste serviceniveaus bereiken en een continu rapportagesysteem waarmee iedereen precies weet waar we aan toe zijn. Voor succes was echter veel meer nodig dan een nieuw stuk software. We moesten de manier veranderen waarop we naar de toekomstige vraag, het aanbodrisico en de veiligheidsvoorraad kijken. Hier zijn een paar belangrijke dingen die we hebben gedaan die het verschil hebben gemaakt.

Stakeholdereducatie en buy-in

Ongeacht het project is het altijd het beste om de buy-in van alle belanghebbenden in te schakelen. We wisten dat we iets moesten doen om ons probleem op te lossen, maar er was zeker weerstand. Senior managers hadden bijvoorbeeld een gezond wantrouwen tegen software ontwikkeld en vroegen zich af of vraagvoorspellingssoftware zou kunnen helpen. Onze inkopers hadden hun eigen perspectieven en inkoopmethoden ontwikkeld en voelden zich persoonlijk in gevaar toen we nieuwe benaderingen overwoog.

Mensen kwamen langs toen ze een gemeenschappelijk begrip van het probleem ontwikkelden en hoe we het zouden aanpakken. Onderwijs was een groot deel van de oplossing. We hebben uitgelegd hoe prognoses werken en de belangrijkste factoren die we allemaal moeten begrijpen: hoe trends te analyseren, hoe 'wat als'-scenario's te gebruiken, de impact van veranderende doorlooptijden, hoe serviceniveaus te relateren aan leveringsrisico en veiligheidsvoorraad en belangrijke prestatie-indicatoren zoals voorraad draait. Door dit proces samen te doorlopen, werden we allemaal belanghebbenden bij de oplossing.

Gebruik de juiste software

Wanneer u veel onderdeelnummers en enige vorm van vraag- of aanbodvariabiliteit heeft, kunt u gewoon niet effectief voorspellen met een spreadsheet. Met ons min/max-voorspellingssysteem waren we van plan een gemiddelde te nemen, en het werkte niet. Gemiddeld gebruik heeft inherente gebreken voor planningsdoeleinden - het is altijd achterom kijken!

U hebt software nodig die vooruitkijkt, seizoenspatronen herkent en u in staat stelt te bepalen hoeveel voorraad u nodig heeft om aan de vereiste serviceniveaus te voldoen gedurende verschillende doorlooptijden.

Processen verfijnen

Als de oude manieren niet werken, moet je openstaan voor het aanpassen van je aannames. Denk minder na over waar je bent geweest en meer over waar je wilt zijn. Bekijk uw doorlooptijden en plan uw gewenste serviceniveau in. De geschiedenis van vorig jaar is misschien niet de beste voorspeller van de vraag van dit jaar. Dezelfde prognosehorizon is mogelijk niet geschikt voor alle producten of een bepaalde tijd van het jaar.

Maak de prognose uitvoerbaar

Het is niet voldoende om een nauwkeurige prognose en geschatte voorraadniveaus te produceren. Je moet een manier ontwikkelen om de informatie bruikbaar te maken voor degenen die ermee belast zijn. We hebben een reeks rapporten ontwikkeld waarmee kopers betere prognose- en veiligheidsvoorraadinformatie konden gebruiken. Nu, aan het einde van elke maand, produceren we een prognoserapport dat een duidelijk beeld geeft van de huidige voorraad, veiligheidsvoorraad, gebruik in het verleden, voorspeld gebruik, inkomende leveringen (PO's) en aanbevolen bestelhoeveelheden.

Resultaten valideren

U kunt, en dat hebben we gedaan, onze nieuwe methoden testen aan de hand van onze eigen vraaggeschiedenis. Toch kan een gezaghebbende buitenstaander acceptatie gemakkelijker maken. We hebben een onderzoek laten uitvoeren door een professor aan de Louisville University's College of Business, die een van haar afgestudeerde studenten aan het werk zette. Door hen konden we versterken wat we zagen gebeuren met onze resultaten, en we voelden ons comfortabel dat we op de goede weg waren.

Al deze factoren hielpen Rev-A-Shelf om zijn vraagplanningsproces met groot succes te transformeren. Vandaag overtreffen we onze doelstellingen op het gebied van serviceniveau en onze opvullingsgraad, gebaseerd op een driedaagse scheepscyclus, vertoont een gestage verbetering en vertoont een stijgende lijn. Over het algemeen zijn de eenheden op voorraad gelijk gebleven, terwijl ze een stijging van de verkoop van 13% ondersteunden.

John Engelhardt is momenteel Director of Purchasing and Asian Operations voor Rev-a-Shelf, LLC in Louisville, KY. Hij heeft verschillende managementfuncties bekleed, zowel bij particuliere bedrijven als bij publieke organisaties. Bij Rev-A-Shelf bekleedde hij de functie van International Sales Manager en Director of Sales Support voordat hij zijn huidige functie op zich nam. Hij is te bereiken op johne op rev-a-shelf dot com.

Laat een reactie achter

gerelateerde berichten

Dagelijkse vraagscenario's

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Constructief spelen met Digital Twins

Constructief spelen met Digital Twins

Degenen onder u die actuele onderwerpen volgen, zullen bekend zijn met de term ‘digitale tweeling’. Degenen die het te druk hebben gehad met hun werk, willen misschien verder lezen en bijpraten. Hoewel er verschillende definities van een digitale tweeling bestaan, is er één die goed werkt: een digitale tweeling is een dynamische virtuele kopie van een fysiek bezit, proces, systeem of omgeving die er hetzelfde uitziet en zich hetzelfde gedraagt als zijn tegenhanger in de echte wereld. Een digitale tweeling neemt gegevens op en repliceert processen, zodat u mogelijke prestatieresultaten en problemen kunt voorspellen die het echte product kan ondergaan.

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

recente berichten

  • Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatieOnzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie
    In this blog, we will discuss today's fast-paced and unpredictable market and the constant challenges businesses face in managing their inventory and service levels efficiently. The main subject of this discussion, rooted in the concept of "Probabilistic Inventory Optimization," focuses on how modern technology can be leveraged to achieve optimal service and inventory targets amidst uncertainty. This approach not only addresses traditional inventory management issues but also offers a strategic edge in navigating the complexities of demand fluctuations and supply chain disruptions. […]
  • Dagelijkse vraagscenario's Smart 2Dagelijkse vraagscenario's
    In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën. […]
  • De kosten als u niets doet met uw voorraadplanningssystemenDe kosten van spreadsheetplanning
    Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën. […]
  • Leren van voorraadmodellen Software AILeren van voorraadmodellen
    In deze videoblog wordt een cruciaal aspect van voorraadbeheer in de schijnwerpers gezet: de analyse en interpretatie van voorraadgegevens. De focus ligt specifiek op een dataset van een openbaar vervoersbedrijf met details over reserveonderdelen voor bussen. […]
  • De methoden voor het voorspellen van softwareDe methoden voor voorspelling
    Software voor vraagplanning en statistische prognoses speelt een cruciale rol in effectief bedrijfsbeheer door functies te integreren die de nauwkeurigheid van prognoses aanzienlijk verbeteren. Een belangrijk aspect is het gebruik van op afvlakking gebaseerde of extrapolatieve modellen, waardoor bedrijven snel voorspellingen kunnen doen die uitsluitend op historische gegevens zijn gebaseerd. Deze basis, geworteld in prestaties uit het verleden, is cruciaal voor het begrijpen van trends en patronen, vooral in variabelen zoals verkoop of productvraag. Voorspellingssoftware gaat verder dan louter data-analyse door de combinatie van professioneel oordeel met statistische voorspellingen mogelijk te maken, waarbij wordt erkend dat prognoses geen one-size-fits-all-proces zijn. Deze flexibiliteit stelt bedrijven in staat menselijke inzichten en sectorkennis in het voorspellingsmodel op te nemen, waardoor een genuanceerdere en nauwkeurigere voorspelling wordt gegarandeerd. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
      MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
    • Vraag naar reserveonderdelen voorspellen-een-ander-perspectief-voor-planning-service-onderdelenDe voorspelling is belangrijk, maar misschien niet zoals u denkt
      Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja. […]
    • Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraadWaarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad
      Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien. […]
    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]