Verbeter de prognosenauwkeurigheid door fouten te beheren

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over het verbeteren van de nauwkeurigheid van prognoses door fouten te managen. Deze video is de eerste in onze serie over effectieve methoden om de nauwkeurigheid van prognoses te verbeteren. We beginnen met te kijken naar hoe voorspelfouten pijn veroorzaken en de daaruit voortvloeiende kosten. Vervolgens zullen we de drie meest voorkomende fouten uitleggen die we moeten vermijden en die ons kunnen helpen de omzet te verhogen en overtollige voorraad te voorkomen. Tom besluit met een overzicht van de methoden om de nauwkeurigheid van voorspellingen te verbeteren, het belang van het meten van voorspellingsfouten en de technologische mogelijkheden om deze te verbeteren.

 

Prognosefout kan gevolgen hebben

Overweeg één item uit vele

  • Product X kost $100 om te maken en levert $50 winst op per eenheid.
  • De verkoop van Product X zal de komende 12 maanden 1.000 per maand blijken te zijn.
  • Overweeg één item uit vele

Wat zijn de kosten van een prognosefout?

  • Als de voorspelling 10% hoog is, sluit het jaar dan af met $120.000 overtollige voorraad.
  • 100 extra/maand x 12 maanden x $100/eenheid
  • Als de voorspelling 10% laag is, mis dan $60.000 winst.
  • 100 te weinig/maand x 12 maanden x $50/eenheid

 

Drie fouten om te vermijden

1. Fout negeren.

  • Onprofessioneel, plichtsverzuim.
  • Wensen zal het niet zo maken.
  • Behandel nauwkeurigheidsbeoordeling als datawetenschap, niet als een verwijt.

2. Meer fouten tolereren dan nodig is.

  • Statistische prognosemethoden kunnen de nauwkeurigheid op schaal verbeteren.
  • Het verbeteren van gegevensinvoer kan helpen.
  • Het verzamelen en analyseren van prognosefoutstatistieken kan zwakke plekken identificeren.

3. Tijd en geld verspillen die te ver gaat om fouten te elimineren.

  • Sommige product/marktcombinaties zijn inherent moeilijker te voorspellen. Na een punt, laat ze zijn (maar wees alert op nieuwe gespecialiseerde voorspellingsmethoden).
  • Soms kunnen stappen die bedoeld zijn om fouten te verminderen averechts werken (bijv. aanpassing).
Laat een reactie achter

RECENTE BERICHTEN

Hebben uw statistische prognoses last van het wiggle-effect?

Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

Hoe om te gaan met statistische prognoses van nul

Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

recente berichten

  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
  • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]

      Voorraadplanning wordt interessanter

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Taiichi Ohno van Toyota wordt gecrediteerd voor het uitvinden van Just-In-Time (JIT) -productie in de jaren vijftig. JIT zorgt ervoor dat een fabrikant alleen produceert wat nodig is, alleen wanneer nodig en alleen in de benodigde hoeveelheid. Die innovatie heeft sindsdien grote gevolgen gehad, sommige goed, sommige minder.

      Een recent artikel in de New York Times "How the World Ran out of Everything" beschrijft enkele van de "mindere" effecten. JIT heeft bijvoorbeeld de voorraadkosten zeer laag gehouden, waardoor het rendement op activa is verbeterd. Dit wordt op zijn beurt beloond door Wall Street, dus veel bedrijven hebben de afgelopen decennia hun voorraden drastisch verminderd. Gefocust als ze waren op financiën, negeerden veel bedrijven de risico's die inherent zijn aan het verminderen van voorraden tot het punt dat 'mager' begon te grenzen aan 'uitgemergeld'. Gecombineerd met de toegenomen globalisering en nieuwe risico's van leveringsonderbrekingen, zijn de voorraden in overvloed toegenomen.

      Sommige industrieën zijn te ver gegaan, waardoor ze blootstaan aan disruptie. In een competitie om de laagste kosten te krijgen, hebben bedrijven onbedoeld hun risico geconcentreerd, onderbroken door tekorten aan grondstoffen of componenten en soms gedwongen om assemblagelijnen stop te zetten. Wall Street kijkt niet goed naar productiestops.

      We weten allemaal dat willekeurige gebeurtenissen het probleem hebben vergroot. De eerste daarvan was de Covid-pandemie. Aangezien de pandemie de fabrieksactiviteiten heeft belemmerd en wanorde heeft veroorzaakt in de wereldwijde scheepvaart, worden veel economieën over de hele wereld gekweld door tekorten aan een enorm scala aan goederen – van computerchips tot hout tot kleding.

      De schade wordt nog groter als er meer onverwachte dingen fout gaan. De blokkade van het Suezkanaal is een goed voorbeeld, het blokkeren van de belangrijkste handelsroute tussen Europa en Azië. Onlangs hebben cyberaanvallen een nieuwe laag van verstoring toegevoegd.

      De reactie creëert zijn eigen problemen, net zoals de cyberaanval op de koloniale pijpleiding gastekorten veroorzaakte door paniekaankopen. Leveranciers beginnen langzamer dan normaal met het uitvoeren van bestellingen. Fabrikanten en distributeurs keren de koers om en vergroten hun voorraden en diversifiëren hun leveranciers om toekomstige voorraden te voorkomen. Het simpelweg uitbreiden van magazijnen biedt misschien niet de oplossing, en de noodzaak om te bepalen hoeveel voorraad moet worden aangehouden, wordt elke dag urgenter.Manager In Magazijn Met Voorraadbeheersoftware

      Dus hoe kun je een real-world plan voor JIT-inventarisatie uitvoeren te midden van al deze risico's en onzekerheden? De basis van uw reactie zijn uw bedrijfsgegevens. Onzekerheid heeft twee bronnen: vraag en aanbod. Voor beide heb je de feiten nodig.

      Maak aan de aanbodzijde gebruik van de gegevens die u heeft over recente doorlooptijden van leveranciers, die de huidige turbulentie weerspiegelen. Gebruik geen gemiddelde waarden als u kansverdelingen kunt gebruiken die het volledige bereik van onvoorziene gebeurtenissen weergeven. Overweeg deze vergelijking. Leverancier A voert nu op betrouwbare wijze bestellingen uit in precies 10 dagen. Leverancier B is ook gemiddeld 10 dagen maar doet het met een 78%/22% mix van 7 en 21 dagen. Zowel A als B hebben een gemiddelde aanvullingsvertraging van 10 dagen, maar de operationele resultaten die ze opleveren zullen heel verschillend zijn. U kunt dit alleen herkennen als u waarschijnlijkheidsmodellen van voorraadprestaties gebruikt.

      Aan de vraagzijde gelden soortgelijke overwegingen. Ten eerste, erken dat er mogelijk een grote verschuiving heeft plaatsgevonden in de aard van de vraag naar artikelen (statistici noemen dit een "regimeverandering"), dus verwijder uit uw analyse alle gegevens die de "goede oude tijd" vertegenwoordigen. Stop dan weer met denken in termen van gemiddelden. Hoewel de gemiddelde vraag belangrijk is, is deze geen voldoende beschrijving van het probleem waarmee u wordt geconfronteerd. Even belangrijk is de volatiliteit van de vraag. Volatiliteit is de reden dat u in de eerste plaats voorraad aanhoudt. Als de vraag volledig voorspelbaar zou zijn, zou u geen stockouts of overtollige voorraad hebben. Net zoals u de volledige waarschijnlijkheidsverdeling van doorlooptijden voor bevoorrading moet schatten, hebt u de volledige verdeling van vraagwaarden nodig.

      Zodra u het bereik van variabiliteit in zowel vraag als aanbod begrijpt, kunt u met probabilistische prognoses rekening houden met verstoringen en ongebruikelijke gebeurtenissen. Software zet uw gegevens on demand en doorlooptijden om in een groot aantal scenario's die aangeven hoe uw volgende planningsperiode eruit zou kunnen zien. Op basis van die scenario's kan de software bepalen hoe uw doelen het beste kunnen worden bereikt voor statistieken als voorraadkosten en voorraadpercentages. Met behulp van oplossingen zoals Smart Inventory Optimization plant u vol vertrouwen op basis van uw beoogde voorraadrisico met minimale voorraadkosten. U kunt ook overwegen om de oplossing optimale serviceniveaudoelen te laten voorschrijven door de kosten van extra voorraad versus voorraadkosten te beoordelen.

      Bij voorraadplanning kunnen we, net als in de wetenschap, niet ontsnappen aan de realiteit van onzekerheid en de impact van ongewone gebeurtenissen. We moeten dienovereenkomstig plannen: met software voor voorraadoptimalisatie kunt u het serviceniveau met de laagste kosten bepalen. Dit creëert een coherente, bedrijfsbrede inspanning die inzicht in de huidige activiteiten combineert met wiskundig correcte beoordelingen van toekomstige risico's en omstandigheden.

      Voorraadplanning is "interessanter" geworden en vereist een grotere mate van risicobewustzijn en wendbaarheid. De juiste software kan daarbij helpen.

       

      Laat een reactie achter

      gerelateerde berichten

      Hebben uw statistische prognoses last van het wiggle-effect?

      Hebben uw statistische prognoses last van het wiggle-effect?

      Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

      Hoe om te gaan met statistische prognoses van nul

      Hoe om te gaan met statistische prognoses van nul

      Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

      recente berichten

      • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
        We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
      • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
        Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
      • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
        Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
      • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
        Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
      • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
        Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
          We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
        • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
          Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
        • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
          Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
        • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
          Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]

          Vier handige manieren om prognosefouten te meten

          De slimme voorspeller

           Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

          In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over het verbeteren van de nauwkeurigheid van prognoses door prognosefouten te meten. We beginnen met een overzicht van de verschillende soorten foutstatistieken: schaalafhankelijke fout, procentuele fout, relatieve fout en schaalvrije foutstatistieken. Hoewel sommige fouten onvermijdelijk zijn, zijn er manieren om deze te verminderen, en prognosestatistieken zijn noodzakelijke hulpmiddelen voor het bewaken en verbeteren van de prognosenauwkeurigheid. Vervolgens zullen we het speciale probleem van de intermitterende vraag en de deel-door-nul-problemen uitleggen. Tom besluit door uit te leggen hoe je prognoses van meerdere items kunt beoordelen en hoe het vaak zinvol is om gewogen gemiddelden te gebruiken, waarbij items verschillend worden gewogen op basis van volume of omzet.

           

          Vier algemene typen foutstatistieken 

          1. Schaalafhankelijke fout
          2. Percentage fout
          3. Relatieve fout
          4. Schaalvrije fout

          Opmerking: Schaalafhankelijke metrieken worden uitgedrukt in de eenheden van de voorspelde variabele. De andere drie worden uitgedrukt als percentages.

           

          1. Schaalafhankelijke foutstatistieken

          • Mean Absolute Error (MAE) ook wel Mean Absolute Deviation (MAD) genoemd
          • Mediane absolute fout (MdAE)
          • Root Mean Square-fout (RMSE)
          • Deze statistieken drukken de fout uit in de oorspronkelijke eenheden van de gegevens.
            • Bijv: eenheden, kisten, vaten, kilogrammen, dollars, liters, enz.
          • Aangezien prognoses te hoog of te laag kunnen zijn, zullen de tekenen van de fouten zowel positief als negatief zijn, waardoor ongewenste annuleringen mogelijk zijn.
            • Bijv.: u wilt niet dat fouten van +50 en -50 worden geannuleerd en "geen fout" weergeven.
          • Om het annuleringsprobleem aan te pakken, nemen deze statistieken negatieve tekens weg door kwadratuur of absolute waarde te gebruiken.

           

          2. Percentage foutmetriek

          • Gemiddelde absolute procentuele fout (MAPE)
          • Deze metriek drukt de grootte van de fout uit als een percentage van de werkelijke waarde van de voorspelde variabele.
          • Het voordeel van deze aanpak is dat het meteen duidelijk maakt of de fout een groot probleem is of niet.
          • Bijv.: stel dat de MAE 100 eenheden is. Is een typische fout van 100 eenheden verschrikkelijk? OK? groot?
          • Het antwoord hangt af van de grootte van de variabele die wordt voorspeld. Als de werkelijke waarde 100 is, dan is een MAE = 100 zo groot als het ding dat wordt voorspeld. Maar als de werkelijke waarde 10.000 is, dan toont een MAE = 100 een grote nauwkeurigheid, aangezien de MAPE slechts 1% is van de werkelijke waarde.

           

          3. Relatieve foutmetriek

          • Mediane relatieve absolute fout (MdRAE)
          • Ten opzichte van wat? Naar een benchmarkprognose.
          • Welke maatstaf? Meestal de "naïeve" voorspelling.
          • Wat is de naïeve voorspelling? Volgende prognosewaarde = laatste werkelijke waarde.
          • Waarom de naïeve voorspelling gebruiken? Want als je daar niet tegen kunt, zit je in een zware vorm.

           

          4. Schaalvrije foutmetriek

          • Mediane relatief geschaalde fout (MdRSE)
          • Deze statistiek drukt de absolute voorspellingsfout uit als een percentage van het natuurlijke niveau van willekeur (volatiliteit) in de gegevens.
          • De volatiliteit wordt gemeten door de gemiddelde grootte van de verandering in de voorspelde variabele van de ene tijdsperiode naar de volgende.
            • (Dit is dezelfde als de fout gemaakt door de naïeve voorspelling.)
          • Hoe verschilt deze statistiek van de bovenstaande MdRAE?
            • Ze gebruiken allebei de naïeve prognose, maar deze statistiek gebruikt fouten bij het voorspellen van de vraaggeschiedenis, terwijl de MdRAE fouten gebruikt bij het voorspellen van toekomstige waarden.
            • Dit is van belang omdat er meestal veel meer historische waarden zijn dan er voorspellingen zijn.
            • Dat is op zijn beurt weer van belang omdat deze statistiek zou "ontploffen" als alle gegevens nul waren, wat minder waarschijnlijk is bij gebruik van de vraaggeschiedenis.

           

          Intermittent Demand Planning en Parts Forecasting

           

          Het speciale probleem van intermitterende vraag

          • "Intermitterende" vraag heeft veel nul-eisen vermengd met willekeurige niet-nul-eisen.
          • MAPE wordt geruïneerd wanneer fouten worden gedeeld door nul.
          • MdRAE kan ook kapot gaan.
          • MdSAE zal minder snel kapot gaan.

           

          Samenvatting en opmerkingen

          • Prognosestatistieken zijn noodzakelijke hulpmiddelen voor het bewaken en verbeteren van de prognosenauwkeurigheid.
          • Er zijn twee hoofdklassen van statistieken: absoluut en relatief.
          • Absolute metingen (MAE, MdAE, RMSE) zijn natuurlijke keuzes bij het beoordelen van prognoses van één item.
          • Relatieve metingen (MAPE, MdRAE, MdSAE) zijn nuttig bij het vergelijken van de nauwkeurigheid tussen items of tussen alternatieve prognoses van hetzelfde item of bij het beoordelen van de nauwkeurigheid ten opzichte van de natuurlijke variabiliteit van een item.
          • Intermitterende vraag levert problemen met delen door nul op die MdSAE verkiezen boven MAPE.
          • Bij het beoordelen van prognoses van meerdere items is het vaak zinvol om gewogen gemiddelden te gebruiken, waarbij items anders worden gewogen op basis van volume of omzet.
          Laat een reactie achter

          RECENTE BERICHTEN

          Hebben uw statistische prognoses last van het wiggle-effect?

          Hebben uw statistische prognoses last van het wiggle-effect?

          Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

          Hoe om te gaan met statistische prognoses van nul

          Hoe om te gaan met statistische prognoses van nul

          Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

          recente berichten

          • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
            We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
          • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
            Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
          • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
            Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
          • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
            Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
          • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
            Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
              We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
            • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
              Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
            • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
              Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
            • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
              Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]

              Herdefinieer uitzonderingen en verfijn de planning om onzekerheid aan te pakken

              De slimme voorspeller

               Het nastreven van best practices op het gebied van vraagplanning,

              prognoses en voorraadoptimalisatie

              Voorraadplanning vanuit het perspectief van een natuurkundige

              In een perfecte wereld zou Just In Time (JIT) de geschikte oplossing zijn voor voorraadbeheer. Als je precies kunt voorspellen wat je nodig hebt en waar je het nodig hebt en je leveranciers kunnen krijgen wat je nodig hebt zonder vertraging, dan hoef je lokaal niet veel voorraad aan te houden. Maar zoals het gezegde luidt van de beroemde bokser Mike Tyson: "iedereen heeft een plan totdat ze in de mond worden geslagen." En de laatste klap in de mond voor de wereldwijde toeleveringsketen was de blokkade van het Suezkanaal van vorige week die $9.6B in de handel tegenhield en naar schatting $6.7M per minuut kostte[1]. Verstoringen als gevolg van deze en soortgelijke gebeurtenissen moeten worden gemodelleerd en in uw planning worden verantwoord.

              De veronderstelling dat je precies kunt toekomst voorspellen bleek uit de wetten van Isaac Newton. Sinds de jaren 1920, met de introductie van de kwantumfysica, werd onzekerheid fundamenteel voor ons begrip van de natuur. Onzekerheid is ingebouwd in de fundamentele realiteit. Zo moet het ook worden ingebouwd in processen voor vraag- en aanbodplanning. Maar al te vaak worden Black Swan-evenementen, zoals de blokkade van het Suezkanaal, vaak gezien als anomalieën en als gevolg daarvan worden ze buiten beschouwing gelaten bij de planning. Het is niet genoeg om achteraf terug te kijken en te verkondigen dat het had kunnen worden verwacht. Er moet iets worden gedaan om het optreden van andere dergelijke gebeurtenissen in de toekomst aan te pakken en de voorraadniveaus dienovereenkomstig te plannen.

              We moeten verder gaan dan het denken van "dunne staartverdeling", waarbij extreme uitkomsten worden verdisconteerd, en plannen maken voor "dikke staarten". Dus hoe voeren we een real-world JIT-plan uit als het gaat om het plannen van inventaris? Om dit te doen, is de eerste stap het inschatten van de realistische doorlooptijd om een artikel te verkrijgen. Schatting is echter moeilijk vanwege de onzekerheid over de doorlooptijd. Met behulp van actuele doorlooptijden van leveranciers in uw bedrijfsdatabase en externe gegevens, kunt u een verdeling van mogelijke toekomstige doorlooptijden en eisen binnen die doorlooptijden ontwikkelen. Probabilistische prognoses stelt u in staat om rekening te houden met verstoringen en ongebruikelijke gebeurtenissen door uw schattingen niet te beperken tot wat uitsluitend is waargenomen op basis van uw eigen kortetermijngegevens over vraag en doorlooptijd. U kunt voor elke gebeurtenis mogelijke uitkomsten met bijbehorende kansen genereren.

              Zodra u een schatting heeft van de doorlooptijd en vraagverdeling, kunt u dat doen specificeer het serviceniveau je moet hebben voor dat onderdeel. Het gebruik van oplossingen zoals Slimme voorraadoptimalisatie (SIO), kunt u vol vertrouwen bevoorraden op basis van het beoogde voorraadrisico met minimale voorraadkosten. U kunt ook overwegen om de oplossing optimale serviceniveaudoelen te laten voorschrijven door de kosten van extra voorraad versus de kosten van voorraaduitval te beoordelen.

              Tot slot moeten we, zoals ik al heb opgemerkt, accepteren dat we nooit alle onzekerheid kunnen wegnemen. Als natuurkundige ben ik altijd geïntrigeerd geweest door het feit dat er, zelfs op de meest basale niveaus van de werkelijkheid zoals we die vandaag kennen, nog steeds onzekerheid bestaat. Albert Einstein geloofde in zekerheid (determinisme) in de natuurkundige wet. Als hij voorraadbeheerder was geweest, had hij misschien voor JIT gepleit omdat hij vond dat natuurkundige wetten perfecte voorspelbaarheid mogelijk zouden moeten maken. Hij zei beroemd: "God speelt niet met dobbelstenen." Of zou het mogelijk kunnen zijn dat het universum waarin we bestaan een "zwarte zwaan" -gebeurtenis was in een eerder "multiversum" dat een bepaald soort universum voortbracht waardoor we konden bestaan.

              Bij voorraadplanning kunnen we, net als in de wetenschap, niet ontsnappen aan de realiteit van onzekerheid en de impact van ongewone gebeurtenissen. We moeten dienovereenkomstig plannen.

               

              [1] https://www.bbc.com/news/business-56559073#:~:text=Looking%20at%20the%20bigger%20picture,0.2%20to%200.4%20percentage%20points.

              Laat een reactie achter

              gerelateerde berichten

              Hebben uw statistische prognoses last van het wiggle-effect?

              Hebben uw statistische prognoses last van het wiggle-effect?

              Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

              Hoe om te gaan met statistische prognoses van nul

              Hoe om te gaan met statistische prognoses van nul

              Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

              recente berichten

              • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
                We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
              • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
                Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
              • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
                Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
              • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
                Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
              • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
                Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

                Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
                  We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
                • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
                  Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
                • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
                  Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
                • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
                  Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]

                  Omgaan met de stijgende vraag tijdens de rebound

                  De slimme voorspeller

                   Het nastreven van best practices op het gebied van vraagplanning,

                  prognoses en voorraadoptimalisatie

                  Veel van onze klanten die tijdens de pandemie de vraag zagen opdrogen, zien nu de vraag terugkeren. Sommigen zien een aanzienlijke stijging van de vraag. Andere klanten in kritieke sectoren zoals kunststoffen, biotechnologie, halfgeleiders en elektronica zagen de vraag al in april stijgen. Lees verder voor suggesties over hoe u met deze situaties om kunt gaan.

                  Een stijgende vraag veroorzaakt meestal twee problemen: onvermogen om bestellingen uit te voeren en onvermogen om aanvulling te krijgen vanwege overbelasting van leveranciers. Deze situatie vereist veranderingen in de manier waarop u uw geavanceerde planningssoftware gebruikt. Hier zijn drie tips om u te helpen het hoofd te bieden.

                   

                  Tip #1: Beperk uw temporele focus

                   

                  In normale tijden (weet je nog?), impliceerden meer gegevens betere resultaten. Tegenwoordig vergiftigen oude gegevens uw berekeningen, omdat ze voorwaarden vertegenwoordigen die niet meer van toepassing zijn. Voorspellingen en andere berekeningen dient u te baseren op gegevens uit de huidige situatie. Waar gegevens uit het verleden moeten worden afgesneden, kan duidelijk zijn uit een grafiek van de gegevens, of u kunt besluiten een "redelijke" afkapdatum vast te stellen op basis van een consensus van collega's. Smart Software heeft machine learning-algoritmen ontwikkeld die automatisch identificeren hoeveel historische data optimaal aan het voorspellingsmodel moet worden ingevoerd. Let op deze verbeteringen aan de software die binnenkort wordt uitgerold. Voer in de tussentijd nauwkeurigheidstests uit met behulp van uitgestelde werkelijke waarden met verschillende historische startdatums. Smart's prognose versus werkelijke functie ondersteunt dit automatisch.

                  Smart Demand Planner-prognoses vs. actueel rapport

                   

                  Tip #2: Verhoog je planningstempo

                   

                  Wanneer de activiteiten stabiel zijn, kunt u uw voorraadbeleid instellen en erop vertrouwen dat dit voor een lange tijd geschikt is. In turbulente tijden is het belangrijk om de frequentie van uw planningscycli te verhogen om te voorkomen dat oude beleidsinstellingen te ver wegdrijven van de optimale situatie.  Frequentere herijking van uw voorraadbeleid en prognoses betekent dat u sneller trends opmerkt die uw concurrentie zullen verrassen en u altijd een stap voor blijven. Met software die in staat is om automatisch optimale waarden te selecteren, kan al dat werk in één keer door de software worden gedaan. U moet die wijzigingen bekijken en mogelijk aanpassen, maar het is logisch om de software het grootste deel van het werk te laten doen.

                   

                  Tip #3: Doe meer wat-als-planning

                   

                  In turbulente tijden verwacht je misschien nog meer turbulentie in de toekomst. Door uw software te gebruiken voor wat-als-planning kunt u zich voorbereiden op veranderingen die mogelijk komen. Stel dat u contact heeft gehad met een belangrijke leverancier die erop wijst dat ze mogelijk de prijzen verhogen of hun leveringsschema's moeten verschuiven. Door de software verschillende inputs te geven, kunt u noodplannen maken. Als de prijzen stijgen, kunt u zien hoe reageren door het wijzigen van bestelhoeveelheden van invloed zou zijn op uw voorraadkosten en voorraadinvesteringen. Als de doorlooptijden oplopen, kunt u zien wat de impact zou zijn op de artikelbeschikbaarheid. Deze voorkennis helpt u erachter te komen wat uw tegenbewegingen zouden zijn voordat de crisis toeslaat.

                  Als er ooit een tijd is geweest dat we op de automatische piloot konden cruisen, dan is het wel in de achteruitkijkspiegel. Uw organisatie, die een explosieve groei doormaakt, heeft veel uitdagingen. Oude antwoorden zijn achterhaald; nieuwe antwoorden moeten ergens vandaan komen, snel. Geavanceerde software die gebruikmaakt van probabilistische voorspelling kan helpen, samen met veranderingen in planningsprocessen.

                   

                  Laat een reactie achter

                  gerelateerde berichten

                  Hebben uw statistische prognoses last van het wiggle-effect?

                  Hebben uw statistische prognoses last van het wiggle-effect?

                  Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

                  Hoe om te gaan met statistische prognoses van nul

                  Hoe om te gaan met statistische prognoses van nul

                  Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

                  recente berichten

                  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
                    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
                  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
                    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
                  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
                    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
                  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
                    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
                  • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
                    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

                    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
                      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
                    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
                      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
                    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
                      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
                    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
                      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]