Beheer van de inventaris van gepromote artikelen

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

In een vorige postbesprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

Als u de termen herziet, bedenk dan dat "serviceniveau" de waarschijnlijkheid is van het niet bevoorraden terwijl u wacht op een aanvullingsorder, terwijl "vulpercentage" het percentage van de vraag is waaraan onmiddellijk uit voorraad wordt voldaan. In mijn vorige bericht, "The Scourge of Skewness", heb ik erop gewezen dat een bepaald type vraagverdeling, met een "long right tail", zal leiden tot opvullingspercentages die veel lager kunnen zijn dan de serviceniveaus. Ik heb er ook op gewezen dat soms de enige manier om het opvullingspercentage te verbeteren, is om het beoogde serviceniveau te verhogen tot een ongewoon hoog niveau, wat duur kan zijn.

In dit bericht zal ik kijken naar het oplossen van het probleem in één speciaal geval: scheefheid als gevolg van effectieve verkooppromoties vermengd met "intermitterende vraag". Intermitterende vraag heeft een groot deel van nulwaarden, met willekeurige waarden die niet gelijk zijn aan nul. Succesvolle verkooppromoties, uiteraard positief, hebben een keerzijde: ze kunnen het "vraagsignaal" verwarren met pieken in uw vraaggeschiedenis, en kunnen prognoses en vertekening van veiligheidsvoorraadberekeningen ondermijnen. Wanneer een intermitterende vraag en effectieve verkoopacties de oorzaak zijn van de scheefheid van uw gegevens, bestaan er methoden om het probleem te omzeilen om zowel hogere opvullingspercentages als nauwkeurigere vraagprognoses te bereiken.

Hoe promoties scheefheid vergroten

Succesvolle promoties doen de vraag naar artikelen abrupt stijgen. Dit creëert anomalieën, of "uitschieters", die bijdragen aan het vormen van een scheve verdeling. Als we weten wanneer er in het verleden promoties hebben plaatsgevonden, kunnen we het record van de eerdere vraag van een item aanpassen. We produceren een alternatieve vraaggeschiedenis alsof er geen promoties zijn geweest, door de uitschieters te vervangen door waarden die meer representatief zijn voor het "natuurlijke" vraagniveau. Deze aanpassingen verminderen de scheefheid van de vraag. Verminderde scheefheid kan leiden tot aanzienlijke verlagingen van zowel verwachte prognoses als veiligheidsvoorraden, die bij elkaar optellen om bestelpunten te vormen.

Succesvolle promoties zullen waarschijnlijk worden herhaald. Wanneer dat gebeurt, kunnen de promotie-effecten worden toegevoegd aan vraagprognoses om hun nauwkeurigheid te vergroten. Het effect van toekomstige promoties op voorraadbeheer zal zijn dat het risico van stockouts toeneemt, dus een verstandige reactie is om op operationeel niveau te werken aan het opbouwen van tijdelijke voorraad, in een hoeveelheid die is afgestemd op de geschatte impact van eerdere promoties op de betrokken artikelen.

 

Gebeurtenismodellering gebruiken om vraagprognoses te verbeteren

Het is mogelijk om de impact van soortgelijke evenementen te modelleren en dit toe te passen op geplande evenementen in de toekomst. Als u dit doet, kunt u uw prognose op twee manieren verbeteren: door de vraagschok te projecteren die u verwacht van een gepland evenement; en het rationaliseren van de pieken in het verleden die werden veroorzaakt door gebeurtenissen, waardoor uw basisactiviteit zichtbaarder en nauwkeuriger voorspelbaar wordt. We doen dit veel in SmartForecasts, dus sta me toe onze ervaring daar te gebruiken om u te laten zien wat ik bedoel.

Event Modeling omvat de volgende stappen:
• Automatische inschatting van de impact van eerdere promoties (wat op zich al een nuttig resultaat is).
• Historische vraag aanpassen om het effect van promoties statistisch te verwijderen.
• Promotie-vrije prognoses maken.
• Het herzien van de prognoses voor eventuele toekomstige perioden waarin promoties zijn gepland.

We noemen dit type analyse “Promo forecasting”. We gebruiken het woord "promoties" om te beschrijven wat u zelf doet om uw resultaten te verbeteren. We gebruiken 'gebeurtenissen' om te beschrijven wat de wereld met u doet, meestal in uw nadeel; voorbeelden zijn stakingen, stroomuitval, magazijnbranden en andere ongelukkige gebeurtenissen.

Om te begrijpen hoe Event Modeling u kan helpen om te gaan met scheefheid bij het doen van vraagprognoses voor artikelen met een hoog volume, bekijkt u figuren 1-3.

Figuur 1 laat zien dat het vraagpatroon van dit artikel duidelijk seizoensgebonden is en dat de voorspelling zowel seizoensgebonden als "strak" is, wat betekent dat het voorspelde onzekerheidsinterval ("foutmarge", weergegeven in cyaankleurige lijnen) erg smal is.

Afbeelding 2 toont een alternatieve geschiedenis waarin een promotie in juni 2014 het gebruikelijke seizoensdieptepunt van juni-verkopen omkeerde. Dit vraagpatroon werd voorspeld met behulp van het automatische voorspellingstoernooi in SmartForecasts, zoals in afbeelding 1. Deze keer vervormde de promotie het seizoenspatroon voldoende om een ongepaste niet-seizoensgebonden voorspelling te maken, en een die een veel grotere foutmarge heeft.

Ten slotte laat afbeelding 3 zien hoe Promo-prognoses omgaan met hetzelfde gepromote scenario, een seizoensprognose behouden en in de prognose een schatting inbouwen van het effect van een geplande herhalingspromotie in 2015.

Het geval van intermitterende vraag

In afbeelding 1 was het artikel een gereed product met een hoog volume en was de taak vraagprognose. Promomodellering is ook nuttig wanneer het gaat om het instellen van veiligheidsvoorraden en bestelpunten voor artikelen met intermitterende vraag, of het nu gaat om gereed product, componenten of reserveonderdelen. Intermitterende vraag heeft vaak een scheve verdeling die het moeilijk maakt om een hoge artikelbeschikbaarheid te bereiken met een kleine investering in voorraad.

Afbeelding 4 illustreert het probleem dat een succesvolle promotie per ongeluk kan veroorzaken voor voorraadbeheer. Als zo'n piek het gevolg is van de natuurlijke, niet-gestimuleerde vraag, dan is de enige manier om hoge opvullingspercentages te behouden, om veiligheidsvoorraden aan te leggen die groot genoeg zijn om deze willekeurige pieken op te vangen. In dit geval was de grote vraagpiek van 500 stuks in februari 2013 het resultaat van een eenmalige actie.

Rekening houden met promoties om voorraadbeheer te verbeteren

Als u de piek in het bovenstaande voorbeeld onbewust beschouwt als onderdeel van de natuurlijke variabiliteit in de vraag, resulteert dit in een slecht opvullingspercentage. Om een beoogd serviceniveau van bijvoorbeeld 95% met een doorlooptijd van één maand te bereiken, zou een bestelpunt van 38 eenheden nodig zijn, berekend als de som van een verwachte prognose over de aanvultijd van één maand van 21 eenheden aangevuld met een veiligheidsvoorraad van 17 eenheden. Deze investering zou resulteren in een teleurstellend opvullingspercentage van slechts 36%.

Erkennen dat de piek een eenmalige promotie is en de 500 eenheden vervangen door 0 zou natuurlijk een groot verschil maken. Het bestelpunt zou dalen van 38 eenheden naar 31 (de som van een verwachte vraag van 7 eenheden en een veiligheidsvoorraad van 24 eenheden) en het opvullingspercentage zou toenemen tot 94%.

Het is natuurlijk niet oké om vervelende pieken in de vraag gewoon weg te gooien wanneer ze het leven ongemakkelijk maken; er moet een valide 'business story' achter de aanpassing van de historische vraag zitten. Als de piek het gevolg is van een gegevensverwerkingsfout, repareer deze dan in ieder geval. Als de piek samenvalt met een promotie, zal het vervangen van de piek door bijvoorbeeld de mediane vraag (vaak nul, zoals in dit voorbeeld) resulteren in een veel duurzamere voorraadinvestering die nog steeds voldoet aan agressieve prestatiedoelstellingen. Toekomstige promoties van hetzelfde type op hetzelfde artikel zullen wat extra inspanning vergen om zich voor te bereiden op de tijdelijke stijging van de vraag, maar het aanbevolen bestelpunt zal op de lange termijn correct zijn.

Thomas Willemain, PhD, was medeoprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselear Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Verward over AI en Machine Learning?

Verward over AI en Machine Learning?

Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

Hoe u voorraadvereisten kunt voorspellen

Hoe u voorraadvereisten kunt voorspellen

Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag.

recente berichten

  • artificial intelligence ai and machine learning inventory managementVerward over AI en Machine Learning?
    Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn. […]
  • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
    In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
  • Balans,Concept,Met,Chroom,Ballen,software voor voorraadoptimalisatieHoe u voorraadvereisten kunt voorspellen
    Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag. […]
  • Demand Planning tweelingbroers met prognosetoolsZes best practices voor vraagplanning waar u twee keer over moet nadenken
    Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen. […]
  • Mannelijke magazijnmedewerker met 99 Service Level palletUitleggen wat 'serviceniveau' betekent in uw voorraadoptimalisatiesoftware
    Navigeren door de fijne kneepjes van voorraadaanbevelingen kan vaak leiden tot vragen over de juistheid en betekenis ervan. Een recent onderzoek van een van onze klanten leidde tot een verhelderende discussie over de nuances van serviceniveaus en bestelpunten. Tijdens een teamvergadering hebben we ongebruikelijke hiaten vastgesteld tussen onze Smart-suggested reorder points (ROP) op een 99%-serviceniveau en de huidige ROP van de klant. In dit bericht ontrafelen we het concept van een "99%-serviceniveau" en de implicaties ervan voor voorraadoptimalisatie, waarbij we licht werpen op hoe timing en onmiddellijke voorraadbeschikbaarheid een cruciale rol spelen bij het voldoen aan de verwachtingen van de klant en concurrerend blijven in diverse industrieën. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]
    • professionele technicus-ingenieur die reserveonderdelen plant in industriële productiefabriek,Bereid uw reserveonderdelenplanning voor op onverwachte schokken
      In het onvoorspelbare zakenklimaat van vandaag moeten we ons zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken. […]

      De plaag van scheefheid

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Demand planners hebben te maken met meerdere problemen om hun werk gedaan te krijgen. Een daarvan is de irritatie van intermittency. Het "nu zie je het, nu niet meer" karakter van intermitterende vraag, met zijn zware mix van nulwaarden, dwingt het gebruik van geavanceerde statistische methoden, zoals het gepatenteerde Markov Bootstrap-algoritme van Smart Software. Maar zelfs binnen het duistere rijk van de intermitterende vraag zijn er moeilijkheidsgraden: planners moeten verder omgaan met de potentieel kostbare Scourge of Skewness.

      Scheefheid is een statistische term die de mate beschrijft waarin een vraagverdeling niet symmetrisch is. De klassieke (en grotendeels mythische) "klokvormige" curve is symmetrisch, met gelijke kansen dat de vraag in elke periode onder of boven het gemiddelde valt. Een scheve verdeling daarentegen is scheef, waarbij de meeste waarden boven of onder het gemiddelde vallen. In de meeste gevallen zijn de vraaggegevens positief scheef, met een lange staart van waarden die zich uitstrekken naar het hogere uiteinde van de vraagschaal.

      Staafdiagrammen van twee tijdreeksen
      Afbeelding 1: Twee intermitterende vraagreeksen met verschillende scheefheidsniveaus
      Figuur 1 toont twee tijdreeksen van 60 maanden intermitterende vraag. Beide zijn positief scheef, maar de gegevens in het onderste paneel zijn meer scheef. Beide series hebben bijna dezelfde gemiddelde vraag, maar de bovenste is een mix van 0-en, 1-en en 2-en, terwijl de onderste een mix is van 0-en, 1-en en 4-en.

      Wat positieve scheefheid een probleem maakt, is dat het de opvullingsgraad van een item verlaagt. Opvullingspercentage is belangrijk voorraadbeheer prestatiemaatstaf. Het meet het percentage van de vraag waaraan onmiddellijk wordt voldaan vanuit de voorhanden voorraad. Eventuele nabestellingen of verloren verkopen verminderen het opvullingspercentage (naast het verspillen van de goodwill van de klant).

      Het opvullingspercentage is een aanvulling op de andere belangrijke prestatiemaatstaf: serviceniveau. Serviceniveau meet de kans dat een artikel niet op voorraad is tijdens de doorlooptijd van de aanvulling. De doorlooptijd wordt gemeten vanaf het moment dat de voorraad daalt tot of onder het bestelpunt van een artikel, waardoor een aanvullingsorder wordt geactiveerd, tot de aankomst van de vervangende voorraad.

      Voorraadbeheersoftware, zoals SmartForecasts van Smart Software, kan vraagpatronen analyseren om het bestelpunt te berekenen dat nodig is om een bepaald serviceniveau te bereiken. Om een 95%-serviceniveau te bereiken voor het artikel in het bovenste paneel van Afbeelding 1, uitgaande van een doorlooptijd van 1 maand, is het vereiste bestelpunt 3; voor het onderste item is het bestelpunt 1. (Het eerste bestelpunt is 3 om rekening te houden met de duidelijke mogelijkheid dat toekomstige vraagwaarden hoger zullen zijn dan de grootste waarden, 2, die tot nu toe zijn waargenomen. In feite zijn waarden zo groot als 8 mogelijk .) Zie afbeelding 2.

      Histogrammen van twee tijdreeksen
      Figuur 2: Verdelingen van de totale vraag gedurende een doorlooptijd van aanvulling van 1 maand
      (Afbeelding 2 geeft de voorspelde verdeling van de vraag over de doorlooptijd weer. De groene balken vertegenwoordigen de waarschijnlijkheid dat een bepaalde vraag zich zal voordoen.)

      Met het vereiste bestelpunt van 3 eenheden is het opvullingspercentage voor het minder scheve artikel een gezonde 93%. Het opvullingspercentage voor het meer scheve item is echter een verontrustende 44%, hoewel ook dit item een serviceniveau van 95% behaalt. Dit is de plaag van scheefheid.

      De verklaring voor het verschil in opvullingspercentages is de mate van scheefheid. Het bestelpunt voor het meer scheve artikel is 1 eenheid. Het hebben van 1 eenheid bij de start van de doorlooptijd is voldoende om 95% van de aanvragen die binnenkomen tijdens een doorlooptijd van 1 maand te behandelen. De maandelijkse vraag kan echter oplopen tot meer dan 15 eenheden, dus wanneer de meer scheve eenheid op voorraad is, zal deze "grote voorraad opraken", waardoor een veel groter aantal eenheden verloren gaat.

      De meeste vraagplanners zouden er trots op zijn om een 95%-serviceniveau en een 93%-vulpercentage te behalen. De meesten zouden verontrust en verbaasd zijn door het 95%-serviceniveau te bereiken, maar slechts een 44%-vulpercentage. Deze gedeeltelijke storing zou niet hun schuld zijn: het kan rechtstreeks worden herleid tot de vervelende scheefheid in de verdeling van maandelijkse vraagwaarden.

      Er is geen pijnloze oplossing voor dit probleem. De enige manier om het opvullingspercentage in deze situatie te verhogen, is door het serviceniveau te verhogen, wat op zijn beurt het bestelpunt zal verhogen, wat uiteindelijk zowel de frequentie van stockouts als hun omvang zal verminderen wanneer ze zich voordoen. In dit voorbeeld zal het verhogen van het bestelpunt van 1 eenheid naar 3 eenheden een 99%-serviceniveau bereiken en het opvullingspercentage verhogen tot een respectabele, maar niet uitstekende, 84%. Deze verbetering zou ten koste gaan van in wezen een verdrievoudiging van de dollars die vastzitten aan het beheer van dit meer scheve item.

      Thomas Willemain, PhD, was medeoprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselear Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

      Laat een reactie achter

      gerelateerde berichten

      Verward over AI en Machine Learning?

      Verward over AI en Machine Learning?

      Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

      Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

      Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

      Hoe u voorraadvereisten kunt voorspellen

      Hoe u voorraadvereisten kunt voorspellen

      Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag.

      recente berichten

      • artificial intelligence ai and machine learning inventory managementVerward over AI en Machine Learning?
        Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn. […]
      • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
        In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
      • Balans,Concept,Met,Chroom,Ballen,software voor voorraadoptimalisatieHoe u voorraadvereisten kunt voorspellen
        Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag. […]
      • Demand Planning tweelingbroers met prognosetoolsZes best practices voor vraagplanning waar u twee keer over moet nadenken
        Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen. […]
      • Mannelijke magazijnmedewerker met 99 Service Level palletUitleggen wat 'serviceniveau' betekent in uw voorraadoptimalisatiesoftware
        Navigeren door de fijne kneepjes van voorraadaanbevelingen kan vaak leiden tot vragen over de juistheid en betekenis ervan. Een recent onderzoek van een van onze klanten leidde tot een verhelderende discussie over de nuances van serviceniveaus en bestelpunten. Tijdens een teamvergadering hebben we ongebruikelijke hiaten vastgesteld tussen onze Smart-suggested reorder points (ROP) op een 99%-serviceniveau en de huidige ROP van de klant. In dit bericht ontrafelen we het concept van een "99%-serviceniveau" en de implicaties ervan voor voorraadoptimalisatie, waarbij we licht werpen op hoe timing en onmiddellijke voorraadbeschikbaarheid een cruciale rol spelen bij het voldoen aan de verwachtingen van de klant en concurrerend blijven in diverse industrieën. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
        • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
          In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
        • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
          Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]
        • professionele technicus-ingenieur die reserveonderdelen plant in industriële productiefabriek,Bereid uw reserveonderdelenplanning voor op onverwachte schokken
          In het onvoorspelbare zakenklimaat van vandaag moeten we ons zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken. […]