Smart Software VP Research presenteert op Business Analytics Conference, INFORMS 2022

Dr. Tom Willemain leidt INFORMS-sessieHet inventarisatieslagveld domineren: willekeur bestrijden met willekeur.”

Belmont, Massachusetts, maart 2022 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagprognose, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat Tom Willemain, Vice President for Research, een presentatie zal geven op de INFORMS Business Analytics Conference, van 3-5 april 2022, in Houston, Texas.

Dr. Willemain zal een sessie presenteren over hoe de volgende generatie analytics leiders in de toeleveringsketen in productie, distributie en MRO bewapent met tools om willekeur in vraag en aanbod te bestrijden. Tijdens zijn sessie zal hij de volgende technologieën toelichten:

(1) Filtering van regimewijzigingen om gegevensrelevantie te behouden tegen plotselinge verschuivingen in de bedrijfsomgeving.

(2) Bootstrapping-methoden om grote aantallen realistische vraag- en doorlooptijdscenario's voor brandstofmodellen te genereren.

(3) Discrete simulaties van gebeurtenissen om de invoerscenario's te verwerken en de verbanden tussen managementacties en belangrijke prestatie-indicatoren bloot te leggen.

(4) Stochastische optimalisatie op basis van simulatie-experimenten om elk item af te stemmen voor de beste resultaten.

Zonder de analyses hebben voorraadeigenaren twee keuzes: vasthouden aan een rigide bedrijfsbeleid dat meestal gebaseerd is op verouderde en ongeldige vuistregels of toevlucht nemen tot subjectief, onderbuikgevoel dat misschien niet helpt en niet schaalt.

Als de toonaangevende Business Analytics-conferentie biedt INFORMS de mogelijkheid om te communiceren met 's werelds beste voorspellingsonderzoekers en praktijkmensen. De opkomst is groot genoeg om de beste uit het veld aan te trekken, maar klein genoeg om elkaar één op één te ontmoeten en te bespreken. Daarnaast bevat de conferentie inhoud van toonaangevende analyseprofessionals die topanalysetoepassingen delen en presenteren die levens redden, geld besparen en problemen oplossen.

 

Over Dr. Thomas Willemaine

Dr. Thomas Reed Willemain was een deskundige statistische adviseur bij de National Security Agency (NSA) bij Ft. Meade, MD, en als lid van de Adjunct Research Staff bij een aangesloten denktank, het Institute for Defense Analyses Center for Computing Sciences (IDA/CCS). Hij is emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute, waar hij eerder faculteitsfuncties bekleedde aan de Kennedy School of Government van Harvard en het Massachusetts Institute of Technology. Hij is ook mede-oprichter en Senior Vice President/Research bij Smart Software, Inc. Hij is lid van de Association of Former Intelligence Officers, de Military Operations Research Society, de American Statistical Association en verschillende andere professionele organisaties. Willemain behaalde het BSE diploma (summa cum laude, Phi Beta Kappa) van Princeton University en de MS en Ph.D. graden van het Massachusetts Institute of Technology. Zijn andere boeken zijn onder meer: Statistical Methods for Planners, Emergency Medical Systems Analysis (met RC Larson) en 80 artikelen in peer-reviewed tijdschriften over statistiek, operationeel onderzoek, gezondheidszorg en andere onderwerpen. Voor meer informatie, e-mail: TomW@SmartCorp.com of bezoek www.TomWillemain.com.

 

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is een leider in het leveren van bedrijfsbrede oplossingen voor vraagprognose, planning en voorraadoptimalisatie voor bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Disney, Otis Elevator, Hitachi, Siemens, Metro Transit, APS en The American Red Cross. Smart Inventory Planning & Optimization geeft vraagplanners de tools om seizoensinvloeden, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en periodiek gevraagde serviceonderdelen en kapitaalgoederen af te handelen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en is te vinden op het World Wide Web op: www.smartcorp.com.

 

SmartForecasts en Smart IP&O hebben gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn het eigendom van hun respectieve eigenaren.

Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

 

Stimuleer operationele efficiëntie en verhoog operationele uitmuntendheid

Smart Software introduceert met genoegen onze nieuwe reeks educatieve webinars, exclusief aangeboden voor Epicor-gebruikers. Greg Hartunian, CEO van Smart Software, zal een webinar van 45 minuten leiden, gericht op specifieke benaderingen van vraagvoorspelling en voorraadplanning, waarmee u de winstgevendheid kunt vergroten, de serviceniveaus kunt verbeteren en de voorraadkosten kunt verlagen. De presentatie schetst de uitdagingen die gepaard gaan met traditionele voorraadplanning en vraagprognoseprocessen en hoe nieuwe probabilistische prognose- en optimalisatiemethoden een groot verschil zullen maken voor uw bedrijfsresultaten. Ten slotte wordt de presentatie afgesloten door te laten zien hoe u de winstgevendheid kunt vergroten met software-verbeterde voorraadplanningsprocessen in een Live Demo.

WEBINAR REGISTRATIEFORMULIER

 

Meld u dan aan om het webinar bij te wonen. Als je geïnteresseerd bent maar niet kunt komen, schrijf je dan toch in - we zullen onze sessie opnemen en je een link naar de herhaling sturen.

We hopen dat je erbij kunt zijn!

 

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); E-mail: info@smartcorp.com

 

Januari 2022: Maximaliseer service levels en minimaliseer voorraadkosten

Smart Software is gespecialiseerd in het helpen van bedrijven die reserveonderdelen vervoeren om hun voorraad te optimaliseren. Een toonaangevende klant van Electric Utility implementeerde bijvoorbeeld Smart IP&O in slechts 90 dagen en verminderde de voorraad met $9.000.000 met behoud van serviceniveaus.

Ons Smart IP&O-platform bevat een gepatenteerde probabilistische voorspellingskern die speciaal is ontworpen voor af en toe gevraagde reserveonderdelen. Neem deel aan onze webinar met Greg Hartunian, CEO van Smart Software, die zal laten zien hoe u optimale voorraadniveaus en inkoophoeveelheden kunt plannen voor duizenden artikelen wanneer de vraag intermitterend is, voortdurend verandert of wordt beïnvloed door onverwachte gebeurtenissen. Dit webinar is een uitstekende gelegenheid om te leren hoe u stock-outs en voorraadkosten kunt verminderen door gebruik te maken van gegevensgestuurde beslissingen die de financiële afwegingen identificeren die verband houden met veranderingen in de vraag, doorlooptijden, serviceniveaudoelen en kosten.

WEBINAR REGISTRATIEFORMULIER

 

Meld u dan aan om het webinar bij te wonen. Als je geïnteresseerd bent maar niet kunt komen, schrijf je dan toch in - we zullen onze sessie opnemen en je een link naar de herhaling sturen.

We hopen dat je erbij kunt zijn!

 

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); E-mail: info@smartcorp.com

 

De omzet verhogen door de beschikbaarheid van reserveonderdelen te vergroten

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Laten we beginnen met in te zien dat een hogere omzet een goede zaak voor u is, en dat het vergroten van de beschikbaarheid van de reserveonderdelen die u levert een goede zaak is voor uw klanten.

Maar laten we ook erkennen dat een toenemende beschikbaarheid van artikelen niet noodzakelijkerwijs leidt tot hogere inkomsten. Als u verkeerd plant en uiteindelijk overtollige voorraad aanhoudt, kan het netto-effect goed zijn voor uw klanten, maar zeker slecht voor u. Er moet een goede manier zijn om dit tot een win-win te maken, als het maar kan worden herkend.

Om hier de juiste beslissing te nemen, moet u systematisch over het probleem nadenken. Dat vereist dat u probabilistische modellen van het voorraadbeheerproces gebruikt.

 

Een scenario

Laten we eens kijken naar een specifiek, realistisch scenario. Heel wat factoren zijn van invloed op de resultaten:

  • Het artikel: een specifiek reserveonderdeel voor een klein volume.
  • Vraaggemiddelde: gemiddeld 0,1 eenheden per dag (dus zeer "intermitterend")
  • Standaardafwijking van de vraag: 0,35 eenheden per dag (dus zeer variabel of "oververspreid").
  • Gemiddelde doorlooptijd leverancier: 5 dagen.
  • Eenheidsprijs: $100.
  • Bewaarkosten per jaar als % van eenheidskosten: 10%.
  • Bestelkosten per PO-snede: $25.
  • Gevolgen stockout: omzetverlies (dus een competitieve markt, geen backorders).
  • Tekortkosten per verloren verkoop: $100.
  • Doelstelling serviceniveau: 85% (dus 15% kans op een stockout in elke aanvullingscyclus).
  • Voorraadbeheerbeleid: Periodieke beoordeling/Order-up-to (ook wel at (T,S)-beleid genoemd)

 

Voorraadbeheerbeleid

Een woord over het voorraadbeheerbeleid. Het (T,S)-beleid is een van de vele die in de praktijk gebruikelijk zijn. Hoewel er andere, efficiëntere beleidsregels zijn (ze wachten bijvoorbeeld niet tot T dagen zijn verstreken voordat ze de voorraad aanpassen), is (T,S) een van de eenvoudigste en daarom behoorlijk populair. Het werkt als volgt: elke T dagen controleer je hoeveel eenheden je op voorraad hebt, zeg X eenheden. Vervolgens bestelt u SX-eenheden, die verschijnen na de doorlooptijd van de leverancier (in dit geval 5 dagen). De T in (T,S) is het "bestelinterval", het aantal dagen tussen bestellingen; de S is het "order-up-to-niveau", het aantal eenheden dat u bij de hand wilt hebben aan het begin van elke aanvullingscyclus.

Om het meeste uit dit beleid te halen, moet u verstandig waarden van T en S kiezen. Verstandig kiezen betekent dat u niet kunt winnen door te raden of door eenvoudige vuistregels te gebruiken, zoals "Houd een gemiddelde van 3 x de gemiddelde vraag bij de hand." Slechte keuzes van T en S schaden zowel uw klanten als uw bedrijfsresultaten. En te lang vasthouden aan keuzes die ooit goed waren, kan resulteren in slechte prestaties als een van de bovenstaande factoren aanzienlijk verandert, dus de waarden van T en S moeten zo nu en dan opnieuw worden berekend.

De slimme manier om de juiste waarden van T en S te kiezen, is door probabilistische modellen te gebruiken die zijn gecodeerd in geavanceerde software. Het gebruik van software is essentieel wanneer u moet opschalen en waarden van T en S moet kiezen die geschikt zijn voor niet één item, maar voor honderden of duizenden.

 

Analyse van scenario

Laten we eens kijken hoe we in dit scenario geld kunnen verdienen. Wat is het voordeel? Als er geen kosten zouden zijn, zou deze post gemiddeld $3.650 per jaar kunnen genereren: 0,1 eenheden/dag x 365 dagen x $100/eenheid. Daarvan worden de bedrijfskosten afgetrokken, bestaande uit voorraad-, bestel- en tekortkosten. Elk van deze zal afhangen van uw keuzes van T en S.

De software geeft specifieke getallen: het instellen van T = 321 dagen en S = 40 eenheden resulteert in gemiddelde jaarlijkse bedrijfskosten van $604, wat een verwachte marge oplevert van $3.650 – $604 = $3.046. Zie tabel 1, linkerkolom. Dit gebruik van software wordt 'voorspellende analyse' genoemd omdat het input van het systeemontwerp vertaalt in schattingen van een belangrijke prestatie-indicator, marge.

Bedenk nu of u het beter kunt doen. Het doel van het serviceniveau in dit scenario is 85%, wat een enigszins ontspannen standaard is die geen aandacht zal trekken. Wat als u uw klanten een 99%-serviceniveau zou kunnen bieden? Dat klinkt als een duidelijk concurrentievoordeel, maar zou het uw marge verminderen? Niet als je de waarden van T en S goed aanpast.

Door T = 216 dagen en S = 35 eenheden in te stellen, worden de gemiddelde jaarlijkse bedrijfskosten verlaagd tot $551 en wordt de verwachte marge verhoogd tot $3.650 – $551 = $3.099. Zie tabel 1, rechterkolom. Dit is de win-win die we wilden: hogere klanttevredenheid en ongeveer 2% meer omzet. Dit gebruik van de software wordt "gevoeligheidsanalyse" genoemd omdat het laat zien hoe gevoelig de marge is voor de keuze van het serviceniveaudoel.

Software kan u ook helpen de complexe, willekeurige dynamiek van voorraadbewegingen te visualiseren. Een bijproduct van de analyse die tabel 1 vulde, zijn grafieken die de willekeurige paden laten zien die door de voorraad worden afgelegd terwijl deze afneemt gedurende een aanvullingscyclus. Figuur 1 toont een selectie van 100 willekeurige scenario's voor het scenario waarin de service level target 99% is. In de figuur resulteerde slechts 1 van de 100 scenario's in een stockout, wat de juistheid van de keuze voor order-up-to-level bevestigt.

 

Overzicht

Het beheer van voorraden reserveonderdelen wordt vaak lukraak gedaan met behulp van onderbuikgevoel, gewoonte of verouderde vuistregel. Op deze manier doorgaan is geen betrouwbaar en reproduceerbaar pad naar een hogere marge of hogere klanttevredenheid. Waarschijnlijkheidstheorie, gedestilleerd tot waarschijnlijkheidsmodellen en vervolgens gecodeerd in geavanceerde software, vormt de basis voor coherente, efficiënte richtlijnen voor het beheren van reserveonderdelen op basis van feiten: vraagkenmerken, doorlooptijden, serviceniveaudoelen, kosten en andere factoren. De hier geanalyseerde scenario's illustreren dat het mogelijk is om zowel een hoger serviceniveau als een hogere marge te realiseren. Een groot aantal scenario's die hier niet worden weergegeven, biedt manieren om hogere serviceniveaus te bereiken, maar marge te verliezen. Gebruik de software.

Scenario's met verschillende serviceniveaudoelen

Voorraad bij de hand tijdens één aanvulcyclus

 

 

Laat een reactie achter

gerelateerde berichten

Hebben uw statistische prognoses last van het wiggle-effect?

Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

Hoe om te gaan met statistische prognoses van nul

Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

recente berichten

  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
  • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]

      Smart Software VP Research presenteert op Business Analytics Conference, INFORMS 2021
      Dr. Tom Willemain leidt INFORMS-sessie over Genereren van probabilistische tijdreeksscenario's Belmont, Massachusetts, maart 2021 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat Tom Willemain, Vice President for Research, een presentatie zal geven op de 2021 Virtual INFORMS Business Analytics Conference van 12 - 14 april. Dr. Willemain zal een sessie presenteren over probabilistische tijdreeksscenario's en hoe dergelijke scenario's worden gebruikt, geëvalueerd en automatisch gegenereerd met behulp van de statistische bootstrap. OK-modellen die zakelijke beslissingen ondersteunen, zijn vaak gebaseerd op enorme aantallen probabilistische scenario's die toekomstige bedrijfsomstandigheden weergeven. Nu bedrijven bijvoorbeeld op steeds lagere aggregatieniveaus en steeds hogere frequenties werken, maken vraagplanning en voorraadoptimalisatie nu gebruik van modellen die worden aangewakkerd door scenario's die de willekeur van de vraag naar producten op dagelijkse schaal weergeven. Dr. Willemain zal bespreken hoe zelfs triviale beslissingstaken, zoals het opleiden van operators, profiteren van een groot aantal realistische trainingsscenario's. INFORMS, de toonaangevende Business Analytics-conferentie, biedt de mogelijkheid om te communiceren met 's werelds toonaangevende onderzoekers en praktijkmensen op het gebied van prognoses. De opkomst is groot genoeg om de besten in het veld aan te trekken, maar klein genoeg om elkaar te ontmoeten en een-op-een te bespreken. De conferentie bevat inhoud van toonaangevende analyseprofessionals, die de beste analysetoepassingen delen en presenteren die levens redden, geld besparen en problemen oplossen. Bovendien erkent en prioriteert de virtual analytics-conferentie de behoefte aan hoogwaardige 'face-to-face'-interacties, netwerken en samenwerking in een virtuele omgeving, naast de allernieuwste analyse-inhoud.   Over Dr. Thomas Willemaine Dr. Thomas Reed Willemain was een deskundige statistische adviseur bij de National Security Agency (NSA) bij Ft. Meade, MD, en als lid van de Adjunct Research Staff bij een aangesloten denktank, het Institute for Defense Analyses Center for Computing Sciences (IDA/CCS). Hij is emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute, waar hij eerder faculteitsfuncties bekleedde aan de Kennedy School of Government van Harvard en het Massachusetts Institute of Technology. Hij is ook mede-oprichter en Senior Vice President/Research bij Smart Software, Inc. Hij is lid van de Association of Former Intelligence Officers, de Military Operations Research Society, de American Statistical Association en verschillende andere professionele organisaties. Willemain behaalde het BSE diploma (summa cum laude, Phi Beta Kappa) van Princeton University en de MS en Ph.D. graden van het Massachusetts Institute of Technology. Zijn andere boeken zijn onder meer: Statistical Methods for Planners, Emergency Medical Systems Analysis (met RC Larson) en 80 artikelen in peer-reviewed tijdschriften over statistiek, operationeel onderzoek, gezondheidszorg en andere onderwerpen. Voor meer informatie, e-mail: TomW@SmartCorp.com of bezoek www.TomWillemain.com.   Over Smart Software, Inc. Smart Software, Inc., opgericht in 1981, is een leider in het leveren van bedrijfsbrede oplossingen voor vraagprognose, planning en voorraadoptimalisatie voor bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Disney, Otis Elevator, Hitachi, Siemens, Metro Transit, APS en The American Red Cross. Smart Inventory Planning & Optimization geeft vraagplanners de tools om seizoensinvloeden, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en periodiek gevraagde serviceonderdelen en kapitaalgoederen af te handelen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en is te vinden op het World Wide Web op: www.smartcorp.com. SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn het eigendom van hun respectievelijke eigenaars. Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478. Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com