El vicepresidente de investigación de Smart Software presentará en la conferencia Business Analytics, INFORMS 2022

El Dr. Tom Willemain dirigirá la sesión INFORMSDominando el campo de batalla del inventario: luchando contra la aleatoriedad con la aleatoriedad.”

Belmont, Massachusetts, marzo de 2022 – Smart Software, Inc., proveedor de soluciones de optimización de inventario, planificación y pronóstico de demanda líderes en la industria, anunció hoy que Tom Willemain, vicepresidente de investigación, presentará en la conferencia INFORMS Business Analytics, del 3 al 5 de abril de 2022, en Houston, TX.

El Dr. Willemain presentará una sesión sobre cómo los análisis de próxima generación arman a los líderes de la cadena de suministro en fabricación, distribución y MRO con herramientas para luchar contra la aleatoriedad en la demanda y el suministro. Durante su sesión detallará las siguientes tecnologías:

(1) Filtrado de cambio de régimen para mantener la relevancia de los datos frente a cambios repentinos en el entorno operativo.

(2) Métodos de arranque para generar grandes cantidades de demanda realista y escenarios de tiempo de entrega para alimentar modelos.

(3) Simulaciones de eventos discretos para procesar los escenarios de entrada y exponer los vínculos entre las acciones de gestión y los indicadores clave de rendimiento.

(4) Optimización estocástica basada en experimentos de simulación para ajustar cada elemento para obtener los mejores resultados.

Sin los análisis, los propietarios del inventario tienen dos opciones: apegarse a políticas operativas rígidas, generalmente basadas en reglas generales obsoletas e inválidas, o recurrir a conjeturas subjetivas e intuitivas que pueden no ayudar y no escalan.

Como la principal Conferencia de Business Analytics, INFORMS brinda la oportunidad de interactuar con los mejores investigadores y profesionales de pronósticos del mundo. La asistencia es lo suficientemente grande como para atraer a los mejores en el campo, pero lo suficientemente pequeña como para reunirse y discutir uno a uno. Además, la conferencia presenta contenido de los principales profesionales de análisis que comparten y muestran las principales aplicaciones de análisis que salvan vidas, ahorran dinero y resuelven problemas.

 

Acerca del Dr. Thomas Willemain

El Dr. Thomas Reed Willemain se desempeñó como consultor experto en estadística de la Agencia de Seguridad Nacional (NSA) en Ft. Meade, MD, y como miembro del personal de investigación adjunto en un grupo de expertos afiliado, el Instituto para el Centro de Análisis de Defensa para las Ciencias de la Computación (IDA/CCS). Es profesor emérito de ingeniería industrial y de sistemas en el Instituto Politécnico Rensselaer, y anteriormente ocupó cargos docentes en la Escuela de Gobierno Kennedy de Harvard y el Instituto de Tecnología de Massachusetts. También es cofundador y vicepresidente sénior/investigación de Smart Software, Inc. Es miembro de la Asociación de ex oficiales de inteligencia, la Sociedad de investigación de operaciones militares, la Asociación estadounidense de estadística y varias otras organizaciones profesionales. Willemain recibió el título de BSE (summa cum laude, Phi Beta Kappa) de la Universidad de Princeton y el MS y Ph.D. grados del Instituto de Tecnología de Massachusetts. Sus otros libros incluyen: Métodos estadísticos para planificadores, Análisis de sistemas médicos de emergencia (con RC Larson) y 80 artículos en revistas revisadas por pares sobre estadísticas, investigación operativa, atención médica y otros temas. Para obtener más información, envíe un correo electrónico a: TomW@SmartCorp.com o visite www.TomWillemain.com.

 

Acerca de Smart Software, Inc.

Fundada en 1981, Smart Software, Inc. es líder en proporcionar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda en toda la empresa. Las soluciones de optimización de inventario y previsión de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Disney, Otis Elevator, Hitachi, Siemens, Metro Transit, APS y The American Red Cross. Smart Inventory Planning & Optimization brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y los bienes de capital demandados de forma intermitente. También proporciona a los gerentes de inventario estimaciones precisas del inventario óptimo y el stock de seguridad requerido para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts, y se puede encontrar en la World Wide Web en www.smartcorp.com.

 

SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.

Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com

 

 

 

Impulse la eficiencia operativa y aumente la excelencia operativa

Smart Software se complace en presentar nuestra nueva serie de seminarios web educativos, ofrecidos exclusivamente para usuarios de Epicor. Greg Hartunian, director ejecutivo de Smart Software, dirigirá un seminario web de 45 minutos que se centrará en enfoques específicos para la previsión de la demanda y la planificación del inventario que le permitirán aumentar la rentabilidad, mejorar los niveles de servicio y reducir los costos de mantenimiento de inventario. La presentación describirá los desafíos asociados con la planificación de inventario tradicional y los procesos de previsión de la demanda y cómo los nuevos métodos de optimización y previsión probabilística marcarán una gran diferencia en sus resultados. Finalmente, la presentación concluirá mostrando cómo aumentar la rentabilidad con procesos de planificación de inventario mejorados por software en una demostración en vivo.

FORMULARIO DE REGISTRO AL SEMINARIO WEB

 

Regístrese para asistir al seminario web. Si está interesado pero no puede asistir, regístrese de todos modos: grabaremos nuestra sesión y le enviaremos un enlace a la repetición.

¡Esperamos que pueda unirse a nosotros!

 

SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.


Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); Correo electrónico: info@smartcorp.com

 

Enero de 2022: maximice los niveles de servicio y minimice los costos de inventario

Smart Software se especializa en ayudar a las empresas de operaciones de transporte de repuestos a optimizar su inventario. Por ejemplo, un cliente líder de servicios eléctricos implementó Smart IP&O en solo 90 días y redujo el inventario en $9,000,000 mientras mantenía los niveles de servicio.

Nuestra plataforma Smart IP&O incluye un núcleo de pronóstico probabilístico patentado diseñado específicamente para piezas de repuesto demandadas intermitentemente. Únase a nuestro seminario web con Greg Hartunian, director ejecutivo de Smart Software, quien mostrará cómo planificar niveles de inventario óptimos y cantidades de compra para miles de artículos cuando la demanda es intermitente, cambia constantemente o se ve afectada por eventos inesperados. Este seminario web es una excelente oportunidad para aprender a reducir los desabastecimientos y los costos de inventario aprovechando las decisiones basadas en datos que identifican las compensaciones financieras asociadas con los cambios en la demanda, los plazos de entrega, los objetivos de nivel de servicio y los costos.

FORMULARIO DE REGISTRO AL SEMINARIO WEB

 

Regístrese para asistir al seminario web. Si está interesado pero no puede asistir, regístrese de todos modos: grabaremos nuestra sesión y le enviaremos un enlace a la repetición.

¡Esperamos que pueda unirse a nosotros!

 

SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.


Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); Correo electrónico: info@smartcorp.com

 

Aumento de los ingresos mediante el aumento de la disponibilidad de piezas de repuesto

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Comencemos reconociendo que el aumento de los ingresos es bueno para usted y que aumentar la disponibilidad de las piezas de repuesto que proporciona es bueno para sus clientes.

Pero también reconozcamos que aumentar la disponibilidad de artículos no necesariamente conducirá a mayores ingresos. Si planifica incorrectamente y termina teniendo un exceso de inventario, el efecto neto puede ser bueno para sus clientes, pero definitivamente será malo para usted. Debe haber alguna forma correcta de hacer que esto sea beneficioso para todos, si tan solo se puede reconocer.

Para tomar la decisión correcta aquí, debe pensar sistemáticamente sobre el problema. Eso requiere que utilice modelos probabilísticos del proceso de control de inventario.

 

un escenario

Consideremos un escenario específico y realista. Muchos factores influyen en los resultados:

  • El artículo: Una pieza de repuesto específica de bajo volumen.
  • Demanda media: promedio de 0,1 unidades por día (por lo tanto, altamente "intermitente")
  • Desviación estándar de la demanda: 0,35 unidades por día (por lo tanto, muy variable o “sobredispersada”).
  • Plazo medio de entrega del proveedor: 5 días.
  • Costo unitario: $100.
  • Costo de mantenimiento por año como % del costo unitario: 10%.
  • Costo de pedido por corte de orden de compra: $25.
  • Consecuencias del desabastecimiento: pérdida de ventas (por lo tanto, un mercado competitivo, sin pedidos pendientes).
  • Costo de escasez por venta perdida: $100.
  • Objetivo de nivel de servicio: 85% (por lo tanto, 15% de probabilidad de desabastecimiento en cualquier ciclo de reabastecimiento).
  • Política de control de inventario: revisión periódica/pedido hasta (también llamada política en (T,S))

 

Política de control de inventario

Una palabra sobre la política de control de inventario. La política (T,S) es una de varias que son comunes en la práctica. Aunque existen otras políticas más eficientes (p. ej., no esperan a que pasen T días para hacer el ajuste de stock), (T,S) es una de las más sencillas y, por lo tanto, bastante popular. Funciona de esta manera: cada T días, verifica cuántas unidades tiene en stock, digamos X unidades. Luego, solicita unidades SX, que aparecen después del tiempo de entrega del proveedor (en este caso, 5 días). La T en (T,S) es el “intervalo de pedido”, el número de días entre pedidos; la S es el "pedido hasta el nivel", la cantidad de unidades que desea tener disponibles al comienzo de cada ciclo de reposición.

Para aprovechar al máximo esta política, debe elegir sabiamente los valores de T y S. Elegir sabiamente significa que no puede ganar adivinando o usando guías simples de reglas generales como "Mantenga un promedio de 3 veces la demanda promedio disponible". Las malas elecciones de T y S perjudican tanto a sus clientes como a sus resultados. Y quedarse demasiado tiempo con opciones que alguna vez fueron buenas puede resultar en un rendimiento deficiente si alguno de los factores anteriores cambia significativamente, por lo que los valores de T y S deben recalcularse de vez en cuando.

La forma inteligente de elegir los valores correctos de T y S es usar modelos probabilísticos codificados en software avanzado. El uso de software es esencial cuando tiene que escalar y elegir valores de T y S que sean correctos no para un artículo sino para cientos o miles.

 

Análisis de Escenario

Pensemos en cómo ganar dinero en este escenario. ¿Cuál es el lado positivo? Si no hubiera gastos, este rubro podría generar un promedio de $3.650 por año: 0,1 unidades/día x 365 días x $100/unidad. Se restarán de eso los costos operativos, compuestos por costos de mantenimiento, pedidos y faltantes. Cada uno de ellos dependerá de sus elecciones de T y S.

El software proporciona números específicos: la configuración de T = 321 días y S = 40 unidades dará como resultado costos operativos anuales promedio de $604, dando un margen esperado de $3,650 – $604 = $3,046. Ver Tabla 1, columna izquierda. Este uso de software se denomina "análisis predictivo" porque traduce las entradas del diseño del sistema en estimaciones de un indicador clave de rendimiento, el margen.

Ahora piensa si puedes hacerlo mejor. El objetivo de nivel de servicio en este escenario es 85%, que es un estándar algo relajado que no llamará la atención. ¿Qué pasaría si pudiera ofrecer a sus clientes un nivel de servicio 99%? Eso suena como una clara ventaja competitiva, pero ¿reduciría su margen? No si ajusta correctamente los valores de T y S.

Establecer T = 216 días y S = 35 unidades reducirá los costos operativos anuales promedio a $551 y aumentará el margen esperado a $3,650 – $551 = $3,099. Ver Tabla 1, columna derecha. Aquí está el ganar-ganar que queríamos: mayor satisfacción del cliente y aproximadamente 2% más de ingresos. Este uso del software se denomina "análisis de sensibilidad" porque muestra cuán sensible es el margen a la elección del objetivo de nivel de servicio.

El software también puede ayudarlo a visualizar la dinámica compleja y aleatoria de los movimientos de inventario. Un subproducto del análisis que llenó la Tabla 1 son los gráficos que muestran las rutas aleatorias tomadas por las existencias a medida que disminuyen durante un ciclo de reabastecimiento. La figura 1 muestra una selección de 100 escenarios aleatorios para el escenario en el que el nivel de servicio objetivo es 99%. En la figura, solo 1 de los 100 escenarios resultó en un desabastecimiento, lo que confirma la precisión de la elección del pedido hasta el nivel.

 

Resumen

La gestión de los inventarios de piezas de repuesto a menudo se realiza al azar utilizando el instinto, el hábito o la regla empírica obsoleta. Volarlo de esta manera no es un camino confiable y reproducible hacia un mayor margen o una mayor satisfacción del cliente. La teoría de la probabilidad, destilada en modelos de probabilidad y luego codificada en software avanzado, es la base para una guía coherente y eficiente sobre cómo administrar las piezas de repuesto en función de los hechos: características de la demanda, plazos de entrega, objetivos de nivel de servicio, costos y otros factores. Los escenarios analizados aquí ilustran que es posible lograr niveles de servicio más altos y un margen más alto. Una multitud de escenarios que no se muestran aquí ofrecen formas de lograr niveles de servicio más altos pero pierden margen. Usa el programa.

Escenarios con diferentes objetivos de nivel de servicio

Stock disponible durante un ciclo de reposición

 

 

Deja un comentario

Artículos Relacionados

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

Cómo manejar pronósticos estadísticos de cero

Cómo manejar pronósticos estadísticos de cero

Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero?

Mensajes recientes

  • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
    A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
  • Grupo de negocios de estilo en trajes de negocios clásicos con binoculares y telescopios reproducen diferentes métodos de pronósticoCómo interpretar y manipular los resultados del pronóstico con diferentes métodos de pronóstico
    Este blog explica cómo funciona cada modelo de pronóstico utilizando gráficos de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro. […]
  • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
  • Qué hacer cuando un pronóstico estadístico no tiene sentidoQué hacer cuando un pronóstico estadístico no tiene sentido
    A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico. […]
  • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
      A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
    • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Trabajador en un almacén de piezas de repuesto para automóviles que utiliza un software de planificación de inventarioPlanificación basada en el nivel de servicio para empresas de repuestos
      La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo. […]

      El vicepresidente de investigación de Smart Software presentará en la conferencia Business Analytics, INFORMS 2021
      El Dr. Tom Willemain dirigirá la sesión INFORMS sobre Generación de Escenarios Probabilísticos de Series Temporales Belmont, Mass., marzo de 2021: Smart Software, Inc., proveedor de soluciones de optimización de inventario, planificación y pronóstico de demanda líderes en la industria, anunció hoy que Tom Willemain, vicepresidente de investigación, presentará en la Conferencia de análisis de negocios Virtual INFORMS 2021 del 12 al 14 de abril. El Dr. Willemain presentará una sesión sobre escenarios probabilísticos de series de tiempo y cómo se utilizan, evalúan y generan automáticamente dichos escenarios mediante el arranque estadístico. Con frecuencia, los modelos OR que respaldan las decisiones comerciales se alimentan de cantidades masivas de escenarios probabilísticos que representan las condiciones operativas futuras. Por ejemplo, con negocios que operan a niveles cada vez más bajos de agregación y frecuencias cada vez más altas, la planificación de la demanda y la optimización del inventario ahora usan modelos impulsados por escenarios que representan la aleatoriedad de la demanda del producto a escala diaria. El Dr. Willemain explicará cómo incluso las tareas de decisión triviales, como la formación del operador, se benefician de un gran número de escenarios de formación realistas. Como la principal Conferencia de Business Analytics, INFORMS brinda la oportunidad de interactuar con los principales investigadores y profesionales de pronósticos del mundo. La asistencia es lo suficientemente grande como para atraer a los mejores en el campo, pero lo suficientemente pequeña como para reunirse y discutir uno a uno. La conferencia presenta contenido de los principales profesionales de análisis, que comparten y muestran las principales aplicaciones de análisis que salvan vidas, ahorran dinero y resuelven problemas. Además, para el contenido de análisis de vanguardia, la conferencia de análisis virtual reconoce y prioriza la necesidad de interacciones, redes y colaboración "cara a cara" de calidad en un entorno virtual.   Acerca del Dr. Thomas Willemain El Dr. Thomas Reed Willemain se desempeñó como consultor experto en estadística de la Agencia de Seguridad Nacional (NSA) en Ft. Meade, MD, y como miembro del personal de investigación adjunto en un grupo de expertos afiliado, el Instituto para el Centro de Análisis de Defensa para las Ciencias de la Computación (IDA/CCS). Es profesor emérito de ingeniería industrial y de sistemas en el Instituto Politécnico Rensselaer, y anteriormente ocupó cargos docentes en la Escuela de Gobierno Kennedy de Harvard y el Instituto de Tecnología de Massachusetts. También es cofundador y vicepresidente sénior/investigación de Smart Software, Inc. Es miembro de la Asociación de ex oficiales de inteligencia, la Sociedad de investigación de operaciones militares, la Asociación estadounidense de estadística y varias otras organizaciones profesionales. Willemain recibió el título de BSE (summa cum laude, Phi Beta Kappa) de la Universidad de Princeton y el MS y Ph.D. grados del Instituto de Tecnología de Massachusetts. Sus otros libros incluyen: Métodos estadísticos para planificadores, Análisis de sistemas médicos de emergencia (con RC Larson) y 80 artículos en revistas revisadas por pares sobre estadísticas, investigación operativa, atención médica y otros temas. Para obtener más información, envíe un correo electrónico a: TomW@SmartCorp.com o visite www.TomWillemain.com.   Acerca de Smart Software, Inc. Fundada en 1981, Smart Software, Inc. es líder en proporcionar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda en toda la empresa. Las soluciones de optimización de inventario y previsión de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Disney, Otis Elevator, Hitachi, Siemens, Metro Transit, APS y The American Red Cross. Smart Inventory Planning & Optimization brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y los bienes de capital demandados de forma intermitente. También proporciona a los gerentes de inventario estimaciones precisas del inventario óptimo y el stock de seguridad requerido para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts, y se puede encontrar en la World Wide Web en www.smartcorp.com. SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños. Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478. Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com