Vraagvariabiliteit beheren

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Iedereen die het werk doet, weet dat het beheren van voorraden stressvol kan zijn. Veelvoorkomende stressfactoren zijn: Klanten met "speciale" verzoeken, IT-afdelingen met andere prioriteiten, wankele ERP-systemen die draaien op onnauwkeurige gegevens, grondstoftekorten, leveranciers met lange doorlooptijden in verre landen waar de productie vaak stopt om verschillende redenen en meer. Deze nota gaat in op één specifieke en altijd aanwezige bron van stress: variabiliteit in de vraag.

Iedereen heeft een prognoseprobleem

 

Stel dat u een grote vloot reserveonderdelen beheert. Dit kan chirurgische apparatuur zijn voor uw ziekenhuis, of reparatieonderdelen voor uw elektriciteitscentrale. Jouw missie is om de uptime te maximaliseren. Je vijand is downtime. Maar omdat storingen willekeurig toeslaan, ben je constant in de reactieve modus. U zou kunnen hopen op redding door prognosetechnologieën. Maar prognoses zijn onvermijdelijk tot op zekere hoogte onvolmaakt: het verrassingselement is altijd aanwezig. U kunt wachten tot Internet of Things (IOT)-technologie op uw apparatuur is geïmplementeerd om dreigende storingen te bewaken en te detecteren, zodat u reparaties ruim van tevoren kunt plannen. Maar u weet dat u de duizenden kleine dingen die kunnen mislukken en een groot ding onbruikbaar kan maken, niet kunt opmeten.

U besluit dus prognoses te combineren met voorraadbeheer en buffers of veiligheidsvoorraden aan te leggen om u te beschermen tegen onverwachte pieken in de vraag. Nu moet je uitrekenen hoeveel Safety stock onderhouden, wetende dat te weinig kwetsbaarheid betekent en te veel een opgeblazen gevoel.

Stel dat u voorraden gereed product beheert voor een make-to-stock-bedrijf. Uw probleem is in wezen hetzelfde als bij het beheren van serviceonderdelen: u hebt externe klanten en een onzekere vraag. Maar misschien heb je ook nog andere problemen als het gaat om het synchroniseren van meerdere leveranciers van componenten die je assembleert tot eindproducten. De leveranciers willen dat je hen vertelt hoeveel van hun spullen ze moeten maken, zodat jij jouw spullen kunt maken, maar je weet niet hoeveel van je eigen spullen je moet maken.

Stel ten slotte dat u afgewerkte goederen behandelt in een bouwbedrijf op bestelling. U zou kunnen denken dat u geen prognoseprobleem meer heeft, aangezien u pas bouwt als u wordt betaald om te bouwen. Maar je hebt wel een prognoseprobleem. Aangezien uw eindproducten kunnen worden samengesteld uit een combinatie van componenten en subassemblages, moet u een prognose van de vraag naar gereed product vertalen om een prognose van die componenten uit te werken. Anders ga je je afgewerkte product maken en ontdek je dat je een vereist onderdeel niet hebt en moet je wachten tot je alles wat je nodig hebt reactief kunt assembleren. En uw klanten zijn misschien niet bereid om te wachten.

Dus iedereen heeft een prognoseprobleem.

Wat maakt prognoses moeilijk

 

Prognoses kunnen snel, eenvoudig en uiterst nauwkeurig zijn - zolang de wereld maar eenvoudig is. Als de vraag naar uw product elke week 10 stuks is, maand na maand, kunt u zeer nauwkeurige prognoses maken. Maar het leven is niet helemaal zo. Als je geluk hebt en het leven is bijna zo - misschien is de wekelijkse vraag meer als {10, 9, 10, 8, 12, 10, 10 ...} - kun je nog steeds een zeer nauwkeurige prognose maken en slechts kleine aanpassingen maken aan de randen . Maar als het leven is zoals het vaker is – misschien ziet de wekelijkse vraag eruit als {0, 0, 7, 0, 0, 0, 23, 0 …} – is vraagvoorspelling inderdaad moeilijk. Het belangrijkste onderscheid is de variabiliteit van de vraag: het is het zigzaggen en zigzaggen dat de pijn veroorzaakt.

Veiligheidsvoorraad neemt het over waar prognoses ophouden

 

Statistische prognosemethoden vormen een belangrijk onderdeel van de oplossing. Ze laten u zoveel mogelijk voordeel halen uit de historische vraagpatronen die uw bedrijf voor elk artikel heeft geregistreerd. De taak van prognoses is om te beschrijven wat typisch is, wat de basis vormt voor het omgaan met willekeur in de vraag. Statistische voorspellingstechnieken werken door het vinden van 'grote plaatje'-kenmerken in vraagrecords, zoals trend en seizoensinvloeden, en deze vervolgens in de toekomst te projecteren. Ze gaan er allemaal impliciet van uit dat welke patronen er nu ook zijn, ze zullen blijven bestaan, dus de groei van 5% zal doorgaan en de vraag in juli zal altijd 20% hoger zijn dan de vraag in februari. Om dat punt te bereiken, gebruiken statistische prognosemethoden een vorm van middeling om de "ruis" in de vraaggeschiedenis te onderdrukken.

Maar dan valt de rest van het werk op voorraadbeheer, omdat de atypische, willekeurige component van de toekomstige vraag in de toekomst nog steeds een gedoe zal zijn. Dit onvermijdelijke niveau van onzekerheid moet worden opgevangen door de "schokbreker" die veiligheidsvoorraad wordt genoemd.

Dezelfde methoden die prognoses van trend en/of seizoensinvloeden produceren, kunnen worden gebruikt om de hoeveelheid voorspellingsfouten te schatten. Dit moet zorgvuldig worden gedaan met behulp van een methode die "holdout-analyse" wordt genoemd. Het werkt zo. Stel dat u 365 waarnemingen heeft van de dagelijkse vraag naar artikel X, met een doorlooptijd voor aanvulling van 10 dagen. U wilt weten hoeveel eenheden er over een toekomstige periode van 10 dagen zullen worden gevraagd. U kunt de eerste 305 dagen van de vraaggeschiedenis invoeren in de prognosetechniek en prognoses krijgen voor de volgende 10 dagen, dagen 306-315.

Het antwoord geeft u een schatting van de totale vraag over 10 dagen. Belangrijk is dat het u ook een schatting geeft van de variabiliteit rond die voorspelling, dwz de voorspellingsfout, het verschil tussen wat er werkelijk gebeurde in dagen 306-315 en wat was voorspeld. Nu kunt u het proces herhalen, dit keer met de eerste 306 dagen om de volgende 10 te voorspellen, de eerste 307 dagen om de volgende 10 te voorspellen, enz. U krijgt uiteindelijk 52 eerlijke schattingen van de variabiliteit van de totale vraag over een periode van 10 dagen. doorlooptijd. Stel dat 95% van die schattingen minder dan 28 eenheden zijn. Dan zouden 28 eenheden een vrij veilige veiligheidsvoorraad zijn om aan de prognose toe te voegen, aangezien u slechts 5% van de tijd tekorten zult tegenkomen.

Moderne statistische software doet deze berekeningen automatisch. Het kan ten minste één van de chronische hoofdpijn van voorraadbeheer verlichten door u te helpen omgaan met de variabiliteit in de vraag.

Laat een reactie achter

gerelateerde berichten

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

Hoe gaat het met ons? KPI's en KPP's

Hoe gaat het met ons? KPI's en KPP's

Het dagelijkse voorraadbeheer kan u bezig houden. Maar je weet dat je af en toe je hoofd omhoog moet brengen om te zien waar je naartoe gaat. Daarvoor moet uw inventarissoftware u statistieken tonen – en niet slechts één, maar een volledige set statistieken of KPI's – Key Performance Indicators.

Verward over AI en Machine Learning?

Verward over AI en Machine Learning?

Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

recente berichten

  • Waarom voorraadplanning niet uitsluitend op eenvoudige vuistregels mag vertrouwenWaarom voorraadplanning niet uitsluitend op eenvoudige vuistregels mag vertrouwen
    Voor te veel bedrijven wordt een cruciaal stukje data-feitenonderzoek – het meten van vraagonzekerheid – afgehandeld met eenvoudige maar onnauwkeurige vuistregels. Vraagplanners berekenen bijvoorbeeld vaak de veiligheidsvoorraad op basis van een door de gebruiker gedefinieerd veelvoud van de voorspelling of het historische gemiddelde. Of ze kunnen hun ERP configureren om meer te bestellen wanneer de beschikbare voorraad gedurende de doorlooptijd twee keer de gemiddelde vraag bereikt voor belangrijke artikelen en 1,5 keer voor minder belangrijke artikelen. Dit is een grote fout met kostbare gevolgen. […]
  • Direct naar het brein van de baas - InventarisanalyseRechtstreeks naar het brein van de baas – voorraadanalyse en rapportage
    In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen. […]
  • U moet samenwerken met de algoritmen voor voorraadbeheerJe moet samenwerken met de algoritmen
    Dit artikel gaat over de echte kracht die voortkomt uit de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. We schrijven vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is het onderwerp hoe je het beste met de software kunt samenwerken. […]
  • Heroverweging van de nauwkeurigheid van prognoses, een verschuiving van nauwkeurigheid naar foutstatistiekenBeantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken
    Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie. […]
  • Het gebruik van belangrijke prestatievoorspellingen om het voorraadbeleid te plannen
    Ik kan me niet voorstellen dat ik een voorraadplanner ben op het gebied van reserveonderdelen, distributie of productie en dat ik veiligheidsvoorraden, bestelpunten en bestelsuggesties moet creëren zonder gebruik te maken van belangrijke prestatievoorspellingen van serviceniveaus, opvullingspercentages en voorraadkosten. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]

      Onnauwkeurige gegevens, tekorten aan grondstoffen, leveranciers met lange doorlooptijden in verre landen kunnen de vraag beïnvloeden. Cloud computing-bedrijven met unieke server- en hardwareonderdelen, e-commerce, online retailers, leveranciers van thuis- en kantoorbenodigdheden, meubilair op locatie, energiebedrijven, intensief onderhoud van bedrijfsmiddelen of opslag voor watervoorzieningsbedrijven hebben hun activiteit tijdens de pandemie opgevoerd. Garages die auto-onderdelen en vrachtwagenonderdelen verkopen, farmaceutische producten, producenten van gezondheidszorg of medische benodigdheden en leveranciers van veiligheidsproducten hebben te maken met een toenemende vraag. Bezorgservicebedrijven, schoonmaakdiensten, slijterijen en magazijnen voor conserven of potten, woonwinkels, tuinleveranciers, tuinonderhoudsbedrijven, hardware-, keuken- en bakbenodigdhedenwinkels, leveranciers van woonmeubelen met een grote vraag worden geconfronteerd met voorraadtekorten, lange doorlooptijden, voorraad tekortkosten, hogere bedrijfskosten en bestelkosten.